
FaultProfIT: Hierarchical Fault Profiling of Incident Tickets in
Large-scale Cloud Systems

Junjie Huang

The Chinese University of Hong Kong

Hong Kong, China

Jinyang Liu

The Chinese University of Hong Kong

Hong Kong, China

Zhuangbin Chen

Sun Yat-sen University

China

Zhihan Jiang

The Chinese University of Hong Kong

Hong Kong, China

Yichen Li

The Chinese University of Hong Kong

Hong Kong, China

Jiazhen Gu
∗

The Chinese University of Hong Kong

Hong Kong, China

Cong Feng

Zengyin Yang

Computing and Networking

Innovation Lab, Huawei Cloud

Computing Technology Co., Ltd

China

Yongqiang Yang

Computing and Networking

Innovation Lab, Huawei Cloud

Computing Technology Co., Ltd

China

Michael R. Lyu

The Chinese University of Hong Kong

Hong Kong, China

ABSTRACT
Postmortem analysis is essential in the management of incidents

within cloud systems, which provides valuable insights to improve

system’s reliability and robustness. At CloudA
1
, fault pattern profil-

ing is performed during the postmortem phase, which involves the

classification of incidents’ faults into unique categories, referred to

as fault pattern. By aggregating and analyzing these fault patterns,

engineers can discern common faults, vulnerable components and

emerging fault trends. However, this process is currently conducted

by manual labeling, which has inherent drawbacks. On the one

hand, the sheer volume of incidents means only the most severe

ones are analyzed, causing a skewed overview of fault patterns.

On the other hand, the complexity of the task demands extensive

domain knowledge, which leads to errors and inconsistencies.

To address these limitations, we propose an automated approach,

named FaultProfIT, for Fault pattern Profiling of Incident Tickets.
It leverages hierarchy-guided contrastive learning to train a hierarchy-

aware incident encoder and predicts fault patterns with enhanced

incident representations. We evaluate FaultProfIT using the pro-

duction incidents from CloudA. The results demonstrate that Fault-

ProfIT outperforms state-of-the-art methods. Our ablation study

and analysis also verify the effectiveness of hierarchy-guided con-

trastive learning. Additionally, we have deployed FaultProfIT at

CloudA for six months. To date, FaultProfIT has analyzed 10,000+

∗
Corresponding author.

1
Due to the company policy, we anonymize the name as CloudA.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0501-4/24/04. . . $15.00

https://doi.org/10.1145/3639477.3639754

incidents from 30+ cloud services, successfully revealing several

fault trends that have informed system improvements.

CCS CONCEPTS
• Software and its engineering→ Software evolution;Main-
taining software.

KEYWORDS
Incident management, incident tickets, fault patterns

ACM Reference Format:
Junjie Huang, Jinyang Liu, Zhuangbin Chen, Zhihan Jiang, Yichen Li, Ji-

azhen Gu, Cong Feng, Zengyin Yang, Yongqiang Yang, and Michael R.

Lyu. 2024. FaultProfIT: Hierarchical Fault Profiling of Incident Tickets

in Large-scale Cloud Systems. In 46th International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP ’24), April
14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3639477.3639754

1 INTRODUCTION
Production incidents, which represent unplanned service interrup-

tions or performance degradation, are inevitable in large-scale cloud

services [14, 50]. They could decrease customer satisfaction and

cause huge economic losses [1, 14, 34]. To effectively manage these

incidents, cloud vendors (e.g., Amazon Web Service [2], Microsoft

Azure [3], and Google Cloud Platform [4]) have developed incident

management systems [21] for prompt incident detection, diagnosis,

and resolution. In such systems, the details of an incident are typi-

cally documented in an incident ticket (see an example in Figure 1),

including its title, symptom, and resolution status, etc. The ticket is
then tracked and updated throughout the incident lifecycle until the

issue is resolved [14]. In general, the entire lifecycle of an incident

can be divided into two main phases, i.e., real-time response and
postmortem analysis [21]. The former aims to quickly mitigate the

incident’s impact upon its occurrence. After incident resolution, the

latter retrospectively examines the tickets to gain valuable insights

that can enhance future incident management [41, 50].

https://doi.org/10.1145/3639477.3639754
https://doi.org/10.1145/3639477.3639754
https://doi.org/10.1145/3639477.3639754

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Junjie Huang, et al.

……

Severity:S3

Service:OS Platform

Symptom: One master node of the MRS cluster
of customerA restarted, taking 8 minutes to start.

Mitigation Action: Replace CPU

Fault Pattern:
Clusters and Hosts Physical
Machine Equipment and
Components CPU Failure

Region: Beijing

ID: 20210121001

Status: MitigatedTitle: Unexpect restart of a master node

Root Cause: CPU overheated and
shut down. … It is necessary to check
if the wind guide cover or CPU cooler
is installed correctly. If it is installed
correctly, the CPU needs to be
replaced…

Figure 1: An example of an incident ticket.

Postmortem analysis plays an essential role in the continuous

improvement of cloud systems’ reliability and robustness [21, 24].

Specifically, it is conducted to understand the root cause of the inci-

dent, assess the impact, and evaluate the mitigation process, which

can potentially be used to prevent similar incidents from happening

again. Existing studies have demonstrated that production incidents

could be recurring [36, 46] or share certain similarities [13]. Thus,

the knowledge and insights derived from the postmortem analysis

often exhibit recurring patterns. By aggregating and categorizing

such recurring patterns, we can identify common faults, solutions,

vulnerable components, and trends in the large volume of incidents,

which can serve as a reference guide for understanding, diagnosing,

and resolving future incidents more efficiently.

Based on this fact, the reliability engineers of CloudA (a top-

tier cloud vendor offering global online services) perform the task

of fault pattern profiling during postmortem analysis. This task

involves classifying the faults that occurred during incidents into

distinct categories, such as CPU overload, power outage, SSD failure,

etc. We refer to each category as a fault pattern, which is a concise

representation of the fault, including a fault name, a set of typical

phenomena seen in historical examples, a list of possible mitigation

measures, etc. A fault pattern of CPU failure is illustrated in Figure 1,

which describes the breakdown of a physical machine in a cluster

due to overheating. Replacing the CPU mitigates the issue. Clearly,

the fault pattern offers readily information about the symptom and

root cause of the incident together with actionable suggestions,

which significantly accelerates the incident management pipeline.

Due to the large scale and complexity of cloud systems, there exist a

tremendous number of fault patterns. To better manage and exploit

this knowledge, they are organized as a tree-like taxonomy based on

their position across the entire cloud system stack (see Section 2.2).

Figure 2 presents an example of such hierarchical taxonomy with

five levels, which shows a customer node suffering a CPU overload

issue. At CloudA, engineers value the role of fault patterns and

have accumulated 334 of them.

In current practice, fault pattern profiling is carried out manually.

This procedure involves carefully examining the tickets, identifying

useful information, and aligning with the fault pattern taxonomy.

While the manual approach is effective, it is time-consuming and

prone to human error. First, the overwhelming volume of incidents

implies that only a small fraction of incidents can be selected for

in-depth postmortem analysis. This sampling may result in fault

patterns that reflect only a partial distribution, thereby leading

to a skewed overview and potentially sub-optimal improvement

decisions. Second, the inherent complexity of the labeling task

……

Root

Customer
Node

Operating
System

System
Resource

CPU
Overload

Fault Pattern

Memory
Overload

Low IO
Performance

……

Level Ⅰ

Level Ⅱ

Level Ⅲ

Level Ⅳ

Level 0

CPU Overload

Instance-level examples:
1. Single CPU utilization > 90%.
2. All CPU utilizations > 60%.
3. System bug-caused CPU surge.

Fault tolerance measures:
1. Raising alerts.
2. Switchover when it is severe.

Related alerts:
……

Figure 2: Fault pattern example in the hierarchical taxonomy.

demands a deep understanding of the entire fault pattern hierar-

chy and the nature of incidents. Such requirements go beyond the

ability of a single engineer. Thus, manual labeling will inevitably

introduce errors and inconsistencies, leading to a distorted fault

pattern distribution. Furthermore, the taxonomy of fault patterns

is not static; it continuously evolves with the introduction of new

patterns and adjustments in existing hierarchical relations. As a

result, it is imperative to develop an automated approach for fault

pattern profiling that can accommodate these complexities.

However, training a model capable of learning from existing fault

patterns to automatically profile the unseen incident tickets is a

non-trivial task, which presents the following two major challenges.

First, fault patterns possess rich and complicated information, mak-

ing their features hard to be exploited. As shown in Figure 2, each

fault pattern not only has a structural position in the hierarchy

but also includes explicit textual descriptions. The challenge lies in

effectively harnessing such hybrid features, both hierarchical and

textual, to accurately predict the fault patterns for unseen tickets.

Second, the limited size of training samples poses another problem.

The development of a robust fault pattern profiling model requires

a substantial volume of labeled incident tickets. However, manually

profiling fault patterns is both expensive and error-prone. Thus,

only limited labeled examples are produced during the daily service

maintenance at CloudA.

To address these challenges, we propose FaultProfIT, an auto-

matic approach for Fault patterns Profiling of Incident Tickets
based on hierarchical textual classification (HTC) [56]. Specifically,

we employ hierarchy-guided contrastive learning [51] to train a

hierarchical text classifier, aiming to precisely encode the sophisti-

cated features of fault patterns while addressing the problem of data

insufficiency. Contrastive learning has long been recognized as an

effective way to learn meaningful textual representations [30, 44]

with limited training samples by augmenting positive and negative

samples and distinguishing among them [44]. By concentrating

on similar input samples and pushing apart dissimilar ones, con-

trastive learning can enhance text representations and improve

classification accuracy. In addition, to fully utilize the knowledge of

fault patterns, we expand conventional contrastive learning to pro-

duce hierarchy-aware text representation. We apply an optimized

Graphormer [55], a powerful graph representation model based on

Transformer layers [48], to encode the hierarchical structures and

node descriptions together. These representations capture both the

semantics and hierarchy of fault patterns, and thus can support

more accurate profiling.

FaultProfIT: Hierarchical Fault Profiling of Incident Tickets in Large-scale Cloud Systems ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

We have evaluated and deployed FaultProfIT at CloudA. Our

evaluation demonstrates that FaultProfIT achieves a high degree

of accuracy (78.3% F1-score) in automatic profiling of fault pat-

terns, outperforming a wide range of text classification models.

We also conduct a comprehensive ablation study and analysis to

demonstrate the effectiveness of our hierarchy-guided contrastive

learning approach in learning hierarchy-aware incident represen-

tation. Furthermore, we profile fault patterns across incidents of

various categories and find that some incidents, such as those as-

sociated with lighter severity and those from infrastructure and

computing services, exhibit higher accuracy. Lastly, we have de-

ployed FaultProfIT to a cloud reliability analysis system at CloudA,

an incident management and analytics platform used by over 30

service teams and thousands of engineers. FaultProfIT has been

running at CloudA for six months, and successfully identified a

number of emerging fault trends, which in turn guide engineers to

fix the vulnerabilities, thus improving system reliability.

To sum up, this paper makes the following contributions:

• To the best of our knowledge, we are the first to automatically

profile fault patterns of incident tickets for postmortem analysis.

• We propose FaultProfIT, which leverages hierarchy-guided con-

trastive learning to learn hierarchy-aware incident representation

to classify pattern pattern labels.

• We conduct an extensive evaluation on the production incidents

at CloudA. The results show that FaultProfIT outperforms state-

of-the-art methods.

• We have deployed FaultProfIT at CloudA for six months, where

it has analyzed over 10,000 incidents from 30+ cloud services and

revealed fault trends for system improvements.

2 BACKGROUND AND MOTIVATION
2.1 Incident and Incident Management
In cloud systems, an incident is defined as an unplanned interrup-

tion or performance degradation of a service or product that impacts

service availability and customer satisfaction [14, 21]. For example,

a slow connection, an unavailable service, and a customer-reported

error could constitute an incident.

2.1.1 Incident Lifecycle. In order to accelerate incident mitigation

and prevent the incident from happening again, cloud vendors such

as CloudA build incident management systems to assist engineers

during the whole incident life cycle [14, 46, 59]. Figure 3 shows

a typical example of the incident lifecycle, which can be broadly

divided into two phrases, i.e., real-time response and postmortem
analysis.
Real-time Response. When an incident occurs, On-Call Engi-

neers (OCEs) must take immediate action to resolve the incident

to minimize its impact. This process begins with incident report-
ing, where an incident is initially raised [22, 34]. In cloud systems,

the incidents can be reported by customers when they encounter

problems during service usage or detected by tailored system mon-

itors when performance metrics fall below pre-defined acceptance

levels. A severity level is also assessed to measure the impacts of

each incident and determine whether additional investigation is

required [5]. Then, in the incident triage stage, the incident will be
routed to an appropriate service team for resolution [9]. Based on

Incident
Reporting

Incident
Triage

Incident
Mitigation

Postmortem
Analysis

Incident Management

Triage Record

Cloud

Incident
Ticket

Postmortem
Report

Final Root Cause

Fault Patterns

Lessons Learned

……

Incident Title

Faulty Components

Occurring Time

First Responsible Team Mitigation Actions

Temporary Root Cause

Severity Level

Service Diagnosis History

……

Incident Lifecycle

Figure 3: The incident management process.

service ownership and heuristic algorithms, the responsible team

is automatically determined. However, due to the high complexity

and dependencies, the incident could be incorrectly triaged. In this

case, it will be re-routed to a more appropriate team for investi-

gation, and this process can repeat several times [20]. The final

stage is incident mitigation, in which the service team investigates

the incident and takes mitigation actions to bring the problematic

service back to normal. In practice, some temporary workarounds

(e.g., server rebooting and configuration change) will be applied

first to quickly mitigate the impact. But occasionally, the team can

encounter intractable problems. In such cases, they can escalate and

engage additional teams for investigation, which often necessitates

more complex mitigation measures to cloud systems, such as bug

fixing and version rollback. Upon the resolution of the incident,

it will be closed in the incident management system. During the

real-time response period, OCEs create incident reports as a record

of diagnosis. The report is written by following some rigorous

rules to ensure clarity, thereby facilitating subsequent diagnostic

procedures and postmortem analyses. At CloudA, an incident re-

port contains plentiful information, including an incident timeline,

temporary root causes, escalating records, mitigation actions, etc.
Postmortem Analysis. At CloudA, when an incident is resolved,

a postmortem analysis will often be conducted to evaluate the cir-

cumstances retrospectively. The insights gleaned from this analysis

are invaluable, serving as important guidelines for the continuous

improvement and enhancement of the cloud system’s reliability.

During analysis, engineers need to write a postmortem report to

reflect the whole incident picture and summarize useful knowledge

for future retrospection. At CloudA, a postmortem report derives

from the original incident ticket and the reliability teamwill involve

more contents to it such as (1) the final root causes of incidents, (2)

fault categories to tag the incident, and (3) suggestions to system

improvement. Such contents are maintained in natural language

and categorical data, which are easily accessible and shareable. Due

to the large volume of incidents and limited human resources, only

a small sample of incidents will be selected and analyzed during

postmortem. The selection criteria of incidents are ad-hoc, mainly

based on engineer feedback, incident severity, and observed trends.

Our work applies directly to enhancing postmortem analysis and

contributing to continuous improvement in cloud reliability, which

deals with automatic fault profiling for incident tickets.

2.1.2 Incident Management System. At CloudA, thousands of inci-
dents are reported to OCEs every day from various sources such as

external customers, internal engineers, and automated monitoring

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Junjie Huang, et al.

Table 1: Categories of fault patterns at level I.

Level I Description Fault Pattern Example

Infrastructure and Sites

Incidents that occur within the physical and network infrastructure of a site.

This includes problems related to external and dedicated networks, data center

environment and facilities, and data center network equipment.

Infrastructure and Sites→Data Center Environ-

ment→Data Center Facilities→ Power Supply

Insufficient

Clusters and Hosts

Incidents that occur within the system clusters and specific hosts, including

the physical machines, virtual machines, containers, and storage.

Clusters and Hosts → Physical Machine → De-

vice and Components→ SSD Failure

Customer Node

Incidents that specifically occur within the business nodes of customers, im-

pacting the operating system and its processes or threads.

Customer Node→Operating System→ System

Resources → CPU Overload

Load and Capacity

Incidents disrupt the balance and efficiency of system load and capacity man-

agement, leading to performance degradation, traffic surges, security threats,

and resource allocation issues.

Load andCapacity→Overload Control→ Fron-

tend Load → Security Attacks

Business and Data

Incidents that occur during the operation andmanagement of business processes

and data, including problems with tenant resources, business configurations,

licensing, security credentials, and system configurations.

Business and Data→ Tenant Resources→ Ten-

ant Account and Data → Tenant Data Deletion

Dependencies

Incidents that occur within the internal and external dependencies of the sys-

tem, including problems with web servers, databases, microservices, and cloud

service dependencies.

Dependencies→ Internal Dependency→ Data-

base → Unavailable Database Service

Disaster Recovery

System’s inability to recover and resume normal operations after a significant

disruption over regions or availability zones.

Disaster Recovery → AZ Disaster Recovery →
AZ Site→ Active AZ Site Failure

systems. To manage the incidents at scale, CloudA developed a

web application for company-wide incident reporting, investiga-

tion, and analysis. During an incident’s lifecycle, an incident ticket

is well-documented to record the incident-related information by

various participants, such as OCEs to verify and report the inci-

dents, SREs to mitigate the incidents, and cloud reliability teams to

conduct postmortem analysis and derive valuable insights. Figure 1

shows an example of incident tickets. These tickets contain fruitful

information such as incident timelines, severity, summaries, root

causes, and mitigation suggestions written by SREs.

2.2 Fault Pattern Profiling
Fault pattern profiling is a crucial task employed by the reliability

team at CloudA to derive insights from postmortem analysis. This

task involves classifying the faults that occurred during incidents

into distinct categories, which is referred to as fault pattern.
Fault Pattern. At CloudA, a fault pattern characterizes abnormal

behaviors exhibited in specific objects. Each fault pattern comprises

a fault name, a set of potential phenomena, measures for fault tol-

erance, etc. An example of a fault pattern, as shown in the right

segment of Figure 2, is CPU overload. This fault pattern is described

by phenomena such as a single CPU utilization exceeding 90%, and

fault tolerance strategies such as switchover. The concise repre-

sentation of faults as fault patterns enables engineers to readily

understand the nature of the faults, thereby facilitating efficient

fault diagnosis and mitigation.

Fault Pattern Taxonomy. The reliability team has developed a

comprehensive fault pattern taxonomy to manage a multitude of

fault patterns across diverse objects. This taxonomy is structured in

a tree-like hierarchy with five levels, comprising 7 hyper classes at

level I and 334 fault patterns at leaf nodes. For example, as shown

in the left segment of Figure 2, a Customer Node consists of the
Operating System level and the Process level, which can be further

subdivided into system resource, environment, and so on.

The principle of constructing the taxonomy is to divide and

group fault patterns based on the specific components where the

faults occur. In practice, it was initiated by analyzing historical inci-

dent records to identify common patterns. Similar fault phenomena

in the same object were summarized into a single fault pattern. Sub-

sequently, similar fault patterns were grouped into a hyper-class

based on the specific objects in which they all occur. The hyper-

class can broadly contain region-level or az level components, but

it can also be narrowed down to a VM or a system environment.

For example, CPU overload, memory overload, and low IO perfor-

mance all reflect different aspects of system resources. With the

dedicated partitioning, the reliability produced the first version of

the taxonomy, which has been maintained for over eight years and

has undergone multiple rounds of refinement. It is now considered

comprehensive and ready-to-use, and is continuously updated to

accommodate new incidents and fault patterns. Table 1 shows the

seven top-level categories in the taxonomy, each consisting of a

brief description and multiple finer-grained subcategories covering

faults in various system components. The fault pattern taxonomy

is a valuable knowledge base of great utility, which has also been

successfully applied in other reliability scenarios at CloudA, such

as guiding fault injection and informing disaster recovery design.

Automatic Fault Pattern Profiling. A crucial aspect of post-

mortem analysis at CloudA involves the examination of incident

fault patterns. The objective of this process is to categorize inci-

dents for follow-up analysis. Figure 1 shows an incident and its

associated fault pattern. By evaluating the distribution of fault pat-

terns over a specific timeframe, the reliability team can discern

system trends and recurring faults. This data-driven understanding

can guide strategic business decisions and assist in setting over-

arching group targets. Additionally, engineers can leverage fault

pattern categories to retrieve relevant incidents of a similar nature,

thereby serving as a valuable reference during fault diagnosis and

a knowledge repository for experience sharing.

FaultProfIT: Hierarchical Fault Profiling of Incident Tickets in Large-scale Cloud Systems ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

The current practice of fault pattern profiling is conducted through

manual labeling during the postmortem phase. Reliability engineers

first examine the diagnostic details within the tickets and then iden-

tify anomalous behaviors, which are typically indicated in natural

language in the tickets. Subsequently, they align the information in

fault patterns with the incident to determine fault patterns. Practi-

cally, a single incident can exhibit multiple fault patterns, indicating

the simultaneous occurrence of multiple faults.

Despite the effectiveness of manual profiling, it is labor-intensive

and susceptible to errors, potentially yielding biased insights re-

garding system maintenance. Firstly, the overwhelming volume

of incidents means that only a small fraction of these incidents

undergo postmortem analysis due to the limited human resources

and high cost of analysis [18]. Incidents of high severity are priori-

tized, resulting in less critical ones being neglected, thereby making

partial coverage. For example, Figure 4 shows the fault pattern dis-

tribution with respect to incidents of different severity that has been

analyzed during postmortem. The incidents with severity S3 signif-

icantly outnumber less severe ones. However, in reality, incidents

in S4 and S5 should be more prevalent. Secondly, the assignment

of fault pattern types requires extensive domain knowledge of in-

cidents and fault patterns. However, the varying expertise levels

of engineers can introduce errors and inconsistencies in manual

profiling. For example, 29% root cause tags assigned by OCEs at

Microsoft are incorrect [18].

To address these issues, our work introduces techniques to au-

tomate the profiling of fault patterns in incident tickets. Figure 5

shows an overview of the task. Our approach not only improves the

efficiency of postmortem analysis but also provides more accurate

fault patterns for downstream applications.

3 METHODOLOGY
As discussed before, manually profiling fault patterns for incident

tickets is labor-intensive and error-prone, leading to a biased un-

derstanding of faults in cloud systems. To address the issue, we

propose FaultProfIT, an automated tool for fault pattern profiling at

CloudA. FaultProfIT utilizes language models to read the diagnostic

descriptions in incident tickets and predicts the fault pattern labels

from the taxonomic hierarchy, which can improve the efficiency of

postmortem analysis and provide actionable insights for business

decision making. In this section, we introduce our method in detail.

3.1 Overview
FaultProfIT utilizes hierarchical text classification techniques [51,

56] to predict fault patterns for incident tickets. The main concept

of FaultProfIT is to employ pretrained language models (PLM) [17]

to comprehend the semantics of incident tickets and incorporate

a taxonomic hierarchy into the PLM to produce hierarchy-aware

representations for classification. Figure 6 shows an overview of

FaultProfIT. Given an incident ticket, we first extract relevant data

from the ticket to establish the incident context (§ 3.2). Subsequently,

we apply an incident encoder based on the MacBERT PLM [16] to

encode incident context into vector features for classification (§ 3.3).

The encoder is trained to incorporate hierarchical fault pattern in-

formation by the hierarchy-guided contrastive learning [51]. In

contrastive learning, building challenging positive samples is cru-

cial [44]. Therefore, guided by the taxonomic hierarchy (§ 3.4), we

Figure 4: Fault pattern distribution of incidentswith different
severities that have undergone postmortem.

construct high-quality positive samples that are both label-involved

and hierarchy-aware for the incident context (§ 3.5). By pulling

closer to the original incident contexts with augmented samples,

the incident encoder can learn to generate hierarchy-aware textual

representations (§ 3.6). Finally, after training, FaultProfIT can dis-

card the redundant hierarchy and utilize the hierarchy-enhanced

incident encoder to classify fault patterns.

3.2 Incident Data Fetching and Preprocessing
During the incident lifecycle, different groups of engineers col-

laboratively contribute to different fields of the incident tickets at

different stages. In order to help the postmortem process and pre-

vent any data leakage, we assume only the fields of tickets before

postmortem analysis can be available for fault pattern profiling

(Figure 3 shows the typical fields before postmortem). In our work,

we select four types of information from tickets to form the incident
context, which is used for the following profiling, including incident

title, symptoms, temporary root causes, and mitigation actions.

In most cases, OCEs do not follow specific formats to fill in the

tickets. For example, the symptoms of tickets could be in various

forms, such as textual descriptions, images, tables, runtime logs,

and shell scripts. This is because the incidents are very different

from each other, and the utmost priority of the OCEs is to mitigate

the incident as soon as possible rather than carefully document the

tickets. However, these multimodal contents may not be recognized

by language models and can add additional noise to the vocabulary.

Therefore, we conduct a series of data cleaning before feeding the

tickets into language models. To deal with that, we first remove

the multimodal information, including images and tables from the

symptoms. Then, we conduct text preprocessing by removing URLs,

HTML tags, and codes using regular expressions and parsers. In this

process, we also clean up the text by removing extra spaces, new line

marks, and extra braces. Finally, we concatenate the selected textual

information by adding a brief description for each field to construct

the incident context to the language model, which is shown below.

The designed format can make the ticket contents more fluent and

interpretable to language models, which is beneficial to improve

the accuracy [39].

Incident context: Incident ticket title: [Title]. Symptoms of

incidents: [Symptoms]. Identified root cause: [Temporary Root

Cause]. Mitigation actions: [Mitigation Actions]

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Junjie Huang, et al.

Incident Tickets

Hierarchiy-guided
Contrastive

Learning

Recurring Issues

FaultProfIT Profiled Fault Patterns Applications

Incident Encoder

Pinpointing Weakness

Trend Analysis

Knowledge Sharing

Hierarchy-guided
Contrastive Learning

Figure 5: The overview of automatic fault pattern profiling.

Incident
Encoder

Classification

Incident context

…

…
…
…
…
…
…
…
…

Incident
Encoder

Classification

Classification loss

Augmented sample

Classification lossContrastive loss

Hierarchy-guided Contrasive Learning Module

Incident
Encoder

Classification

Incident context

…

…
…
…
…
…
…
…
…

Incident
Encoder

Classification

Augmented sample

Classification lossContrastive loss
Customer Node

CPU Overload …

Figure 6: The overview of FaultProfIT. Parts in blue and red
denote the training and prediction workflow, respectively.

3.3 Incident Encoder
The incident encoder aims to transform the raw text of incidents

into representation vectors, which serve as features for classifi-

cation. Our approach requires a strong encoder to represent the

incident context due to the diverse contents in incident tickets.

Therefore, we adopt pretrained language models (PLMs) [17] to en-

code incident context, which have demonstrated remarkable ability

to understand the semantic meaning of incidents and have proven

effective in recent incident understanding tasks [6, 28]. In this work,

we leverage MacBERT [16] as our text encoder, which is a Trans-

former encoder model with the same architecture as BERT [17].

The reason we choose MacBERT over BERT is that MacBERT is

an optimized version of BERT trained on the multi-lingual cor-

pus and is capable of processing both Chinese and English. For-

mally, an input token sequence of incident context is represented as

𝑥 = {[CLS], 𝑥1, 𝑥2, . . . , 𝑥𝑛−2, [SEP]}, where [CLS] and [SEP] are

two special tokens to indicate the beginning and the end of the

sequence. The input sequence is then mapped into input represen-

tations and fed into MacBERT to obtain the hidden representations

for each token: X = MacBERT(𝑥),X ∈ R𝑛×𝑑𝑡 , where 𝑛 is the num-

ber of tokens in 𝑥 and 𝑑𝑡 is the embedding dimension. We use the

hidden representation of the first token ([CLS]) to represent the

whole sequence x = X[CLS].

3.4 Hierarchy Encoder for Fault Patterns
The hierarchy encoder aims to transform the fault pattern hierarchy

into a series of feature vectors, where each vector represents a node

in the hierarchy. In our work, we formulate the fault pattern hier-

archy as a Directed Acyclic Graph (DAG) 𝐺 = (𝐹, 𝐸), where each

node 𝑓𝑖 from the node set 𝐹 contains a node label and description,

and the edge set 𝐸 represents a set of parent-child relations among

pairs of nodes, i.e., the overall hierarchy. Then we use an optimized

Graphormer [55] to encode the graph, which is the state-of-the-art

graph representation architecture based on Transformer layers [48]

with spatial encoding and edge encoding.

Our hierarchy encoder first maps the nodes from the graph

into a set of input feature vectors. The default Graphormer uses a

randomly initialized label embedding of 𝑓𝑖 as the input vector f𝑖 .
However, in our task, each node contains a clear natural language

description of the fault label, which we believe provides fruitful

information and can benefit the node representation. Therefore, we

adopt the optimized input feature vector of a node to enrich the

semantics, which is computed as the sum of label embedding and

its description embedding:

f𝑖 = 𝐿𝑎𝑏𝑒𝑙𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑓𝑖) + 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑓𝑖) (1)

The label embedding is randomly initialized and learnable during

training with a dimension of 𝑑𝑡 . The description embedding is

computed by a MacBERT encoder using the average of hidden

token representations of the description, which also has a size of 𝑑𝑡 .

Specially, we obtain the textual description depending on the node

type. For fault patterns in the leaf nodes, we simply concatenate the

fault name, instance-level examples, and fault tolerance measures

with a brief description for each field. For the fault node in the first

four levels, we concatenate its name and description to form the

textual input. Finally, we obtain all the 𝑘 input node feature vectors,

which can be stacked as a matrix F ∈ R𝑘×𝑑𝑡 .
After obtaining input node features, the hierarchy encoder in-

jects the parent-child relations to obtain hierarchy-aware node

representations with Graphormer architecture:

H = Graphormer(F) (2)

Concretely, Graphormer encodes the structural information by

spatial encoding and edge encoding. The edge encoding computes

the aggregated weight of edges within the path of two nodes, and

the spatial encoding measures the distance between two nodes,

where both weight matrices are added into the original Query-

Key product matrix in the self-attention layer. Here we omit the

Graphormer architecture and inherent computation, and please

refer to the original paper for the details.

3.5 Positive Sample Construction
A critical pre-step of contrastive learning is to build challenging

positive samples that can be used to contrast [7, 25, 54]. In our

FaultProfIT: Hierarchical Fault Profiling of Incident Tickets in Large-scale Cloud Systems ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

task, we aim to construct high-quality positive samples for each

label considering the taxonomic hierarchy, which can guide models

to acquire hierarchy-aware label representations [51] (Section 4.4

shows the obtained hierarchy-aware representations). The idea of

our positive sample construction approach originates from an ob-

servation that when text is classified into a certain category, most

words are unimportant [7]. For example, when an incident descrip-

tion is classified as “CPU overload”, some keywords such as “CPU

utilization” or “exceed 90%” provide strong signals while words

like users or clusters have fewer impacts. Therefore, the perturbed

text that removes some unimportant tokens while keeping the key-

words should maintain the original label and can be regarded as a

positive sample. Based on this observation, we construct positive

samples and utilize fault pattern hierarchy to guide the keyword

selection.

We locate the important keywords under a given label by com-

puting the attention weights to the hierarchy-aware label represen-

tation and then gather the tokens with larger weights to build the

positive samples. Concretely, given the hidden token representa-

tions X ∈ R𝑛,𝑑𝑡 of an incident ticket, we first compute the scale-dot

attention [48] to the node representation H ∈ R𝑘,𝑑𝑡 to obtain the

attention weight matrix 𝐴 ∈ R𝑛,𝑘 , where each element 𝐴𝑖 𝑗 deter-

mines the importance of the 𝑖-th token on a node label 𝑓𝑗 . After that,

we sample important tokens from the importance matrix for a given

label 𝑓𝑗 to form a positive sample 𝑥 . To make the sampling differen-

tiable, we replace the softmax function with gumbel-softmax [27]

to calculate the probability that 𝑥𝑖 is the keyword of class 𝑓𝑗 by:

𝑃𝑖 𝑗 = 𝑔𝑢𝑚𝑏𝑒𝑙_𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴𝑖1, 𝐴𝑖2, . . . , 𝐴𝑖𝑘) 𝑗 , (3)

which satisfies

∑
𝑗 𝑃𝑖 𝑗 = 1. Since each incident can have multiple

fault pattern labels, we obtain the final importance score of each

token 𝑥𝑖 by simply adding up the probability of the token regarding

its ground-truth label set 𝑓 as 𝑃𝑖 =
∑

𝑗∈ 𝑓 𝑝𝑖 𝑗 . The importance scores

are used for the final positive sample construction. As one label can

havemultiple important tokens, we do not transform the probability

to one-hot vectors after softmax for discretization. Instead, we

keep the tokens for positive samples if their probabilities of being

sampled exceed a threshold 𝜆. Therefore, the positive sample 𝑥 can

be constructed as:

𝑥 = {𝑥𝑖 if 𝑃𝑖 > 𝜆} (4)

The positive sample 𝑥 is encoded by the same text encoder to obtain

the hidden representations: X̂ = MacBERT(𝑥). The hidden represen-

tation of first token ([CLS]) is used for sequence representation:

x̂ = X̂[CLS].

3.6 Contrastive Learning
After obtaining positive samples, we adopt contrastive learning [11]

to train hierarchy-aware incident and fault pattern representations

for better fault pattern profiling. Contrastive learning aims to learn

representations by enforcing positive samples to be closer while

keeping negative samples further apart. This is achieved by leverag-

ing a contrastive loss function to maximize the similarities of posi-

tive samples within the batch and has been proven effective in learn-

ing strong representations in many classification tasks [43, 45, 52].

Specially, for each incident sample, we have one positive sample

constructed by the method in Section 3.5, and 2(𝑁 − 1) negative

samples which are all the remaining samples except for 𝑥 and 𝑥 in

the training batch with a batch size of 𝑁 . Finally, we compute the

NT-Xent [11] contrastive loss function of all examples in the batch:

𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑡𝑟𝑎 = −
2𝑁∑︁
𝑖=1

log

𝑒cosine(x
(𝑖) ,x̂(𝑖))/𝜏∑

2𝑁
𝑗=1, 𝑗≠𝑖 𝑒

cosine(x(𝑖) ,x(𝑗))/𝜏
, (5)

where cosine(·, ·) is the cosine similarity between two vectors and

𝜏 is a temperature hyperparameter.

3.7 Classification and Training Objective
Classification. The classification module aims to map each inci-

dent feature vector into a set of labels. Following previous works [51,

60], we feed the incident representation x into a linear classifier

with a sigmoid activation function for multi-label classification.

The probability on fault labels 𝑓𝑗 is computed as:

𝑝 𝑗 = sigmoid(𝑊𝑐 · x + 𝑏𝑐) 𝑗 , (6)

where𝑊𝑐 ∈ R𝑘×𝑑ℎ and 𝑏𝑐 ∈ R𝑑ℎ are the weights and the bias

term. The labels with the probabilities exceeding a certain thresh-

old will be collected as the prediction, which is set to 0.5 in our

work. Notice that we train the incident encoder with hierarchy-

guided contrastive learning, which is supposed to be injected with

the knowledge of fault pattern hierarchy. Thus, we do not need to

incorporate the node representation encoded by hierarchy fault pat-

tern encoder during classification, which is more computationally

efficient and effective.

Training Objective. During training, we jointly optimize all pa-

rameters of our model, including the incident encoder, hierarchy

encoder, positive sample construction module, and the classifica-

tion module. These components work together to categorize fault

patterns and learn representations in a contrastive manner. For

fault pattern profiling, we employ weighted binary cross-entropy
loss, a commonly used loss function for multi-label classification.

In this context, a weight parameter 𝛾 is introduced:

𝐿𝑜𝑠𝑠𝑐𝑙𝑠 = −
𝑁∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝛾 ¤𝑓 (𝑖)
𝑗

log (𝑝 (𝑖)
𝑗

) + (1 − 𝑓
(𝑖)
𝑗

) log (1 − 𝑝
(𝑖)
𝑗

) . (7)

The role of 𝛾 is to mitigate class imbalance and enhance model’s

sensitivity towards infrequent classes. The objective is to minimize

this loss, i.e.,, to make the predicted probability as close as possible

to the true label.

In Section 3.5, we construct positive samples by keeping a few

important tokens, which are supposed to maintain the original

labels. To train a more robust classifier, we involve the constructed

positive samples and compute the classification loss ˆ𝐿𝑜𝑠𝑠
𝑐𝑙𝑠

. Similar

to Equation 7, we adopt binary classification loss by substituting

𝑝
(𝑖)
𝑗

to 𝑝
(𝑖)
𝑗

, where the probability 𝑝
(𝑖)
𝑗

can be obtained with the

same classification module.

The final loss function is the combination of classification loss of

original samples, classification loss of constructed positive samples,

and contrastive learning loss function:

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑐𝑙𝑠 + ˆ𝐿𝑜𝑠𝑠
𝑐𝑙𝑠 + 𝛼𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑡𝑟𝑎, (8)

where 𝛼 is a hyperparameter to control the weight of 𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑡𝑟𝑎 .

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Junjie Huang, et al.

4 EVALUATION
We evaluate our method by answering the following research ques-

tions (RQs):

• RQ1: How effective is FaultProfIT in fault pattern profiling?

• RQ2: How does hierarchy-guided contrastive learning affect

FaultProfIT?

• RQ3: How does FaultProfIT perform on diverse types of inci-

dents?

4.1 Experiment Designs
Dataset. We collect incident tickets from the incident manage-

ment system at CloudA, which are created from January 1, 2017,

to December 31, 2022. The system is used by a range of service

teams such as computing, networking, and storage. As FaultProfIT

is proposed to assist in postmortem analysis, we conduct filtering

to obtain incidents that are ready for postmortem. In particular, we

only include tickets from the “Mitigated” ones and remove those

with all empty contents in the fields of symptom, temporary root

cause, and mitigation actions. Finally, we collect 22,560 incidents

and 1,463 with annotated fault pattern labels. The number of anno-

tated samples is low since the profiling was done in the postmortem

analysis stage, and the postmortem is not done for every incident.

We use the 1,463 incident tickets that are labeled with fault

patterns to form our dataset for evaluation. The dataset is randomly

split into training, valuation and test with a portion of 80%:10%:10%.

We tune our model on the validation set to search for the best

hyperparameters and report the results on the test set.

Implementation Details. We conduct our experiments on a Linux

GPU server with Intel Xeon 2.3GHz CPU and NVIDIA Tesla T4

16G GPU. We implement FaultProfIT with Python 3.7.10, PyTorch

1.10.0 [42] and transformers 4.2.1 [53]. For Graphormer, we set the

attention head to 8 and feature size 𝑑𝑡 to 768, which is the same di-

mension as the representations produced by the MacBERT encoder

𝑑ℎ . The maximum input token length of MacBERT is 512. During

training, we use Adam [31] optimizer with a learning rate of 1e-5

and linear scheduling with 5% warm-up. We set the training batch

size as 8 and train the model for 100 epochs. As for hyperparame-

ters, the contrastive loss weight 𝛼 , binary classification weigh 𝛾 and

threshold 𝜆 are selected by grid search on development set where

𝛼 is set to 0.1, 𝛾 is set to 5 and 𝜆 is set to 0.01. The temperature 𝜏 of

the contrastive module is set to 1.

4.2 RQ1: How effective is FaultProfIT in fault
pattern profiling?

Setup. In this RQ, we evaluate the effectiveness of FaultProfIT on

the fault pattern profiling task. We compare the whole FaultProfIT

model against three baseline methods to classify fault patterns.

We use the average precision, average recall and F1 score over

all examples as the comparing metrics. Specifically, we compare

FaultProfIT with the three following baseline methods.

• Dense Passage Retriever [29] (DPR) is the state-of-the-art text
matching model, which relates the incident context to fault de-

scriptions in a joint vector space to find the relevant fault patterns.

We simply take the top-5 labels as predictions since taxonomy

has five levels. The DPR is unaware of the hierarchy.

Table 2: Experiment results of different models.

Method Precision Recall F1-score

Dense Retriever 48.5 61.1 54.1

MacBERT 58.5 61.9 60.1

ChatGLM 60.0 65.2 62.5

HiAGM 72.1 78.2 75.1

FaultProfIT 76.6 80.1 78.3

• MacBERT [16] is a multi-label text classifier that feeds the

concatenation of incident context and fault descriptions into a

MacBERT classifier to obtain relevance scores. It treats taxonomy

as flattened labels without considering the structure.

• ChatGLM [19] is a bilingual (English and Chinese) large lan-

guage model with 13B parameters. We tune ChatGLM to clas-

sify fault patterns among flatted labels without structure with

a parameter-efficient tuning method based on P-Tuning [40] at

INT4 quantization level.

• HiAGM [60] is a state-of-the-art hierarchical text classification

model which matches incident context embeddings to fault pat-

tern embeddings encoded by Graph Convolution Networks. Hi-

AGM has leveraged the hierarchical relationships.

Results. Table 2 shows the performance of different models on fault

pattern profiling. We observe that FaultProfIT performs substan-

tially better than the other three baseline methods among all met-

rics, indicating the superiority of FaultProfIT in identifying correct

fault patterns for incident tickets. In addition, models leveraging

the taxonomic structures (i.e., FaultProfIT and HiAGM) outperform

models without considering the structures (i.e., Dense Retriever,
MacBERT, and ChatGLM) by a large margin. This result demon-

strates the importance of injecting hierarchical information to guide

models to capture label relationships for better profiling.

4.3 RQ2: How does hierarchy-guided
contrastive learning affect FaultProfIT?

Setup. FaultProfIT leverages contrastive learning guided by taxo-

nomic hierarchy to train hierarchical aware incident representation.

In this RQ, we examine the effectiveness of hierarchy-guided con-

trastive learning on the fault pattern profiling task.We first compare

the performance of FaultProfIT against its variants by removing or

replacing different components in FaultProfIT. Then, we analyze

the label representations of fault patterns to reveal the learnt hier-

archy. Specially, we consider the following variants and report the

precision, recall, and F1 score on level IV for illustration.

• r.p. GCN: We replace Graphormer with Graph Convolutional

Network [32] (GCN) as the backbone of hierarchy encoder.

• r.p. GAT: We replace Graphormer with Graph Attention Net-

work [49] (GAT) to encode hierarchy.

• w.o. Graphormer: We remove then Graphormer encoder and di-

rectly use the node vectors to guide positive sample construction.

• w.o. description embedding: We remove description embedded

in the hierarchy encoder and only use the label embedding.

• w.o. contrastive loss: We remove contrastive loss function.

• w.o. augmented samples loss: We remove the classification loss

function for augmented positive samples.

FaultProfIT: Hierarchical Fault Profiling of Incident Tickets in Large-scale Cloud Systems ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

Table 3: Experiment results of different models.

Method Precision Recall F1-score

FaultProfIT 76.6 80.1 78.3
-r.p. GCN 71.4 74.2 72.8

-r.p. GAT 71.9 74.8 73.3

-w.o. description embedding 72.8 75.1 74.0

-w.o. Graphormer 66.2 71.8 68.9

-w.o. contrastive loss 67.2 75.5 71.3

-w.o. augmented samples loss 53.4 64.4 58.4

-w.o. whole contrastive module 50.6 59.5 54.7

• w.o. whole contrastive module: We remove the entire hierarchy-

guided contrastive learning module and only leverage the inci-

dent encoder and classification module for profiling.

Results. The results in Table 3 shows that: (1) Graphormer exhibits

superior performance compared to both GCN and GAT hierarchy

encoders in this task. This can be attributed to the fact that GCN

and GAT encode local structures, which only perform convolutions

or attentions on neighboring nodes, whereas Graphormer employs

global attention, allowing each node to attend to all others in the

graph. This global attention mechanism is more effective in encod-

ing hierarchy. (2) Removing the description embedding from the

node embedding leads to a decrease in performance for FaultProfIT.

This result highlights the significance of fault descriptions, as they

provide additional semantic information that helps in learning

more effective representations. (3) When the Graphormer encoder

is entirely discarded, there is a significant drop in performance,

indicating the usefulness of hierarchy in providing organized label

relations that guide fault pattern profiling. (4) Without the train-

ing objectives of contrastive loss or classification loss of positive

samples, FaultProfIT performs poorly. This indicates that both the

positive sample construction and the contrastive learning frame-

work contribute to FaultProfIT. The positive samples are useful

even without contrastive learning, and contrastive learning can

further enhance the model by constraining the vector space. (5)

Removing the entire hierarchy-guided contrastive learning module

results in a substantial accuracy decline for FaultProfIT. This find-

ing again confirms the effectiveness of our method in hierarchical

fault pattern profiling.

Visualization. To investigate the encoding of the taxonomic hier-

archy, we visually analyze the distributions of fault pattern embed-

dings. Specifically, we consider the weight matrix𝑊𝑐 ∈ R𝑘×𝑑ℎ in

Equation 6 as fault pattern representations. where each row repre-

sents a node in the taxonomy. We employ the T-SNE algorithm [47]

with default parameters to project the high-dimensional vectors

into a two-dimensional space. The resulting points are plotted in

Figure 7, where points with the same color correspond to fault pat-

terns from the same parent node. For comparison, we also visualize

the embeddings produced by MacBERT. Our observations reveal

that the fault pattern embeddings of MacBERT are scattered, while

the embeddings of FaultProfIT exhibit clustering based on the par-

ent nodes. This behavior arises from the fact that the representation

of a label and its parent is trained to be similar, as they are classified

simultaneously. Consequently, if the hierarchy is incorporated into

FaultProfITMacBERT

CPU Overload Memory Overload Low IO PerformanceVM CPU Overload

Figure 7: Visualization of the fault pattern representations.

the text representation, labels sharing the same parent should pos-

sess more similar representations compared to those with different

parents.

4.4 RQ3: How does FaultProfIT perform on
diverse types of incidents?

Setup. Developing a strong fault pattern profiler necessitates a sub-

stantial volume of training data. To accommodate this requirement,

we utilize a number of historical incident tickets collected from a

variety of services and encompassing a range of severity levels. In

this RQ, we explore the performance of FaultProfIT across diverse

incident types. To this end, we partition the testset into several

subsets based on their severity and the services they impact. Given

the existence of over 30 distinct services, we categorize them into

five primary groups: Infrastructure, Computing, Networking, Storage,
and Others.
Results. Figure 8 shows the F1-score of FaultProfIT across various

incident types. From the left segment of Figure 8, we can find that

FaultProfIT exhibits superior performance on incidents with less

severity, especially those of S5 level, compared to more severe ones.

This could be attributed to the increased complexity in diagnosing

severe incidents, which often involve extended incident contexts

and a greater number of affected components, thereby posing a

greater challenge for FaultProfIT to identify. These findings further

confirm the viability of automated fault pattern profiling within

cloud systems, given the higher frequency of less severe incident

tickets and fewer human resources allocated for analysing these

tickets, compared to those of higher severity.

The right segment of Figure 8 indicates that the accuracy varies

across services. Incidents impacting services within the Infrastruc-
ture and Computing categories yield a relatively high F1-score.

Conversely, incidents affecting services within Storage or Others
categories demonstrate lower accuracy. Different from other ser-

vices, the Infrastructure and Computing services mainly experience

faults within clusters and hosts, which comprise servers and hard-

ware. These incidents often exhibit explicit descriptive signals such

as “server” or “datacenter”, thereby facilitating easier classifica-

tion. The lower F1-score associated with Storage services can be

attributed to the smaller number of incidents within this category

present in our dataset, as the service is more robust and produces

fewer failures. The low accuracy of the Others category is because

it consists of multiple services, each with diverse phenomenons and

mitigation methods. As a result, FaultProfIT encounters difficul-

ties in discerning common semantic patterns within this category,

leading to a higher rate of erroneous predictions.

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Junjie Huang, et al.

S2 S3 S4 S5
0

20

40

60

80

100

F1
-s

co
re

 (%
)

63.6

77.2 76.6
83.1

Infrastructure

Computing

Networking
Storage

Others

85.5 84.3
76.8

71.1 72.6

Figure 8: Results of FaultProfIT for incidents of different
severities and services.

5 DEPLOYMENT EXPERIENCE
In this section, we share our experience of deploying FaultProfIT

in product X, a cloud reliability analysis system at CloudA. This

system provides an extensive array of centralized analytic func-

tionalities for incident management, including tracing, retrieval,

analysis, and modeling. These functionalities are tailored to support

a variety of service teams and engineers in managing their pro-

duction incidents and identifying reliability issues. At CloudA, the

reliability team conducts incident postmortem analysis with prod-

uct X. One of the major outcomes is the profiling of fault patterns,

which are subsequently utilized for trend analysis and vulnerability

identification. In most cases, the reliability team does not conduct

postmortem analysis once the incident is mitigated. Instead, they

perform analysis periodically, such as weekly or monthly, selecting

a set of severe incidents to investigate and profile fault patterns.

Traditionally, the process of fault pattern profiling relied on

manual labeling. However, with the introduction of new service

products and the increasing number of customers, engineers found

it increasingly challenging to analyze emerging incidents. To re-

duce efforts, reliability engineers prioritized severe incidents (i.e.,
S1, S2, and S3) for profiling and proposed product improvement

suggestions based on the profiling results. However, such practices

neglect the incidents with less severity. Even though system up-

dates were frequently released to improve reliability, the number of

minor incidents continued to increase. Although such incidents did

not cause severe impacts thanks to the fault tolerance measures,

specific customers suffered from occasional performance degrada-

tion or network interruption, affecting customer experience and

causing complaints. Therefore, the integration of automated tools

for fault pattern profiling is essential to improve both the efficiency

and comprehensiveness of the analysis process.

To achieve this goal, we have integrated FaultProfIT into product

X. Currently, 10,000+ of incidents from 30+ cloud services (including
historical incidents) have been analyzed by FaultProfIT for fault

pattern profiling over a six-month period. Concretely, we provide

an API interface in Product X. Engineers can invoke the API to

call FaultProfIT, which automatically analyzes incident tickets to

profile fault patterns. When the API is invoked, the unanalyzed

tickets are sent to the server. Subsequently, FaultProfIT conducts

data preprocessing and predicts the labels in a batch manner. Once

the prediction is completed, the profiled fault patterns are returned

and visualized on the frontend of product X.

To show how the predicted fault patterns are utilized in CloudA,

we collected incidents created over the most recent 26 weeks after

the deployment. Their fault patterns are automatically profiled by

1 8 15 22 26
Week

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 V
al

ue

Realize
the
trend

Release
new
product

Auto-profiled
Manually-analyzed

Figure 9: An example of trends analysis for thememory over-
load fault pattern with FaultProfIT.

FaultProfIT on a weekly basis. We present an example trend of the

fault pattern named memory overload from a computing service,

which indicates that the system’s memory usage had exceeded

its capacity. Figure 9 shows the trends of incidents with memory

overload from two resources
2
. The blue line represents manually

analyzed postmortem reports, which are conducted only on severe

incidents, and the red line represents automatically profiled inci-

dents. In the first 10 weeks, the occurrence of incidents of the fault

pattern remained at a low level. Then from week 10 onwards, the

number of auto-profiled incidents began to rise, reaching a peak at

week 16.Without the integration of FaultProfIT, engineers would be

unaware of the faults their service was undergoing, as the memory

overload is not a severe fault to cause large impacts and thus they

are not analyzed in the postmortem. However, with FaultProfIT,

they were alerted to an increasing number of memory overload

incidents at week 15. Therefore, the team initiated a set of actions

to investigate the overload issues within the service. During the

two-month investigation, engineers conducted numerous experi-

ments to test the system, identify weaknesses, and fix the defects.

Finally, they released a new version of the service at week 22, and

this fault pattern began to decrease and eventually returned to a

low level by week 26.

6 RELATEDWORKS
With years of efforts, researchers have conducted numerous stud-

ies [14, 24, 26, 37] and proposed many automatic approaches [15,

22, 23, 33, 33–35, 58] on cloud incidents management. Among these

works, Gunawi et al. [24] discussed why incidents still take place

in cloud systems by analyzing public incident reports of popular

cloud services. Chen et al. [14] presented a comprehensive study

on how incidents are managed in Microsoft Azure.

Timely and accurate incident detection can facilitate the quick

response of engineers, accelerating the procedures involved in inci-

dent management. By analyzing cloud system service behaviors,

Warden [34] was proposed to analyze system-wide alerting signals

from a global view for proactive incident detection. To avoid the

flooding issue reports, MID [22] was proposed to identify incidents

from large-amount, multi-dimensional issue reports.

2
Due to confidential reasons, we present a normalized occurrence number to reflect

the trends.

FaultProfIT: Hierarchical Fault Profiling of Incident Tickets in Large-scale Cloud Systems ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

Once the incidents are detected, diagnosis and Root Cause Anal-

ysis (RCA) are conducted to obtain comprehensive information that

aids in follow-up triage and choosing effective mitigation strategies.

Onion [58] localizes the incident-indicating logs from the incident

context, where a contrast analysis is then performed to accurately

find out a few lines of root cause related log. ESRO [8] constructs

a unified graph of alerts and incident reports to recommend root

causes and remediation steps. iPACK [38] and LinkCM [23] were

proposed to link and aggregate duplicate incidents by fusing the

failure information between the customer-reported tickets and the

machine-generated incidents. To avoid excessive aggregation of

incidents, HALO [57] was proposed to localize the fault to a proper

granularity, which usually suffers from improper aggregation level

of incidents for further diagnosis and triage. Chen et al. [9] con-

ducted an empirical study about incident triage in Microsoft Azure

and further proposed DeepCT [10] to automate continuous incident

triage for further incident mitigation.

After the mitigation of incidents, postmortem analyses are con-

ducted to provide fruitful insights and experiences. This knowledge

can assist in profiling the fault, contributing significantly to the

enhancement of the system’s stability and response speed. Shetty et

al. [46] conducted an empirical study on hundreds of high severity

incidents postmortems in a large-scale cloud service and provided

guidance on how to tackle future incidents. AutoARTS [18] was pro-

posed to label incident root causes by analyzing potential contribut-

ing factors with knowledge gained from incident postmortems.

The rise of Large Language Model (LLM) has brought new op-

portunities to the field of intelligent incident management. With

intrinsic domain knowledge, LLM can diagnose and interpret in-

cidents like on-call engineers (OCEs). Ahmed et al. [6] effectively

fine-tuned LLMs to suggest the root cause and mitigation strategies

for cloud incidents, combining both external domain expertise and

internal pre-trained model knowledge. Moreover, RCACopilot [12]

was proposed to summarize the incidents and predict the incident’s

root cause with generated explanations by employing LLMs.

Our work focuses on the postmortem analysis phase of incident

management. We distinguish from existing works by developing

an automated approach to profile fault patterns based on incident

tickets, which can handle emerging and less severe incidents. Our

work can provide a comprehensive view of a range of incidents and

improve the efficiency of reliability engineers.

7 CONCLUSION
Fault pattern profiling is an important task of incident postmortem

analysis in large-scale cloud systems. To support consistent and

large-scale fault pattern profiling, we introduce FaultProfIT, an

automated approach that leverages hierarchical text classification.

FaultProfIT takes the textual incident context as input and applies

language models to predict fault pattern labels. To inject hierarchy

information into the taxonomy and mitigate the data insufficiency

problem, we employ hierarchy-guided contrastive learning to en-

hance the incident representations. We evaluate our approach to

the production incidents of CloudA, a top-tier global cloud provider.

Experimental results demonstrate the high F1-score achieved by

FaultProfIT and the effectiveness of hierarchy-guided contrastive

learning. Furthermore, we have deployed FaultProfIT at the reli-

ability analysis platform of CloudA for a duration of six months,

gaining valuable insights and experience from the deployment.

ACKNOWLEDGEMENT
We sincerely thank the anonymous reviewers for their constructive

comments and suggestions. The work described in this paper was

supported by the Research Grants Council of the Hong Kong Special

Administrative Region, China (No. CUHK 14206921 of the General

Research Fund).

REFERENCES
[1] 2021. 2021 Facebook outage. https://en.wikipedia.org/wiki/2021_Facebook_

outage. [Online; accessed 31 July 2023].

[2] 2023. AWS Post-Event Summaries. https://aws.amazon.com/cn/premiumsupport/

technology/pes/. [Online; accessed 31 July 2023].

[3] 2023. Azure status history. https://azure.status.microsoft/en-us/status/history/.

[Online; accessed 31 July 2023].

[4] 2023. Google Cloud Status Dashboard. https://status.cloud.google.com/summary.

[Online; accessed 31 July 2023].

[5] Salman Ahmed, Muskaan Singh, Brendan Doherty, Effirul Ramlan, Kathryn

Harkin, Magda Bucholc, and Damien Coyle. 2023. Knowledge-based intelligent

system for IT incident DevOps. In 2023 IEEE/ACM International Workshop on
Cloud Intelligence & AIOps (AIOps). IEEE, 1–7.

[6] Toufique Ahmed, Supriyo Ghosh, Chetan Bansal, Thomas Zimmermann, Xuchao

Zhang, and Saravan Rajmohan. 2023. Recommending Root-Cause and Mitigation

Steps for Cloud Incidents Using Large Language Models. In Proceedings of the 45th
International Conference on Software Engineering (Melbourne, Victoria, Australia)

(ICSE ’23). IEEE Press, 1737–1749.

[7] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-JhangHo,Mani Srivastava,

and Kai-Wei Chang. 2018. Generating Natural Language Adversarial Examples.

In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. 2890–2896.

[8] Sarthak Chakraborty, Shubham Agarwal, Shaddy Garg, Abhimanyu Sethia,

Udit Narayan Pandey, Videh Aggarwal, and Shiv Saini. 2023. ESRO: Experience

Assisted Service Reliability against Outages. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 255–267.

[9] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng

Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. An empirical

investigation of incident triage for online service systems. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 111–120.

[10] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao,

Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. Continuous incident

triage for large-scale online service systems. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 364–375.

[11] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A

simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[12] Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie

Cao, Xuedong Gao, Hao Fan, Ming Wen, et al. 2023. Empowering Practical Root

Cause Analysis by Large Language Models for Cloud Incidents. arXiv preprint
arXiv:2305.15778 (2023).

[13] Yujun Chen, Xian Yang, Hang Dong, Xiaoting He, Hongyu Zhang, Qingwei Lin,

Junjie Chen, Pu Zhao, Yu Kang, Feng Gao, et al. 2020. Identifying linked incidents

in large-scale online service systems. In Proceedings of the 28th ACM joint meeting
on European software engineering conference and symposium on the foundations of
software engineering. 304–314.

[14] Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu Zhang, Hui Xu, Yangfan

Zhou, Li Yang, Jeffrey Sun, Zhangwei Xu, et al. 2020. Towards intelligent incident

management: why we need it and how we make it. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1487–1497.

[15] Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, XueminWen, Xiao Ling,

Yongqiang Yang, and Michael R Lyu. 2021. Graph-based incident aggregation for

large-scale online service systems. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 430–442.

[16] Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, and Guoping Hu.

2020. Revisiting Pre-Trained Models for Chinese Natural Language Processing. In

Findings of the Association for Computational Linguistics: EMNLP 2020. 657–668.
[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Association

https://en.wikipedia.org/wiki/2021_Facebook_outage
https://en.wikipedia.org/wiki/2021_Facebook_outage
https://aws.amazon.com/cn/premiumsupport/technology/pes/
https://aws.amazon.com/cn/premiumsupport/technology/pes/
https://azure.status.microsoft/en-us/status/history/
https://status.cloud.google.com/summary

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Junjie Huang, et al.

for Computational Linguistics: Human Language Technologies (NAACL-NLT). 4171–
4186.

[18] Pradeep Dogga, Chetan Bansal, Richard Costleigh, Gopinath Jayagopal, Suman

Nath, and Xuchao Zhang. 2023. AutoARTS: Taxonomy, Insights and Tools for

Root Cause Labelling of Incidents in Microsoft Azure. In 2023 USENIX Annual
Technical Conference (USENIX ATC 23). 359–372.

[19] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and

Jie Tang. 2022. GLM: General Language Model Pretraining with Autoregressive

Blank Infilling. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 320–335.

[20] Jiaqi Gao, Nofel Yaseen, Robert MacDavid, Felipe Vieira Frujeri, Vincent Liu,

Ricardo Bianchini, Ramaswamy Aditya, XiaohangWang, Henry Lee, David Maltz,

et al. 2020. Scouts: Improving the diagnosis process through domain-customized

incident routing. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures, and
protocols for computer communication. 253–269.

[21] Supriyo Ghosh, Manish Shetty, Chetan Bansal, and Suman Nath. 2022. How to

fight production incidents? an empirical study on a large-scale cloud service. In

Proceedings of the 13th Symposium on Cloud Computing. 126–141.
[22] Jiazhen Gu, Chuan Luo, Si Qin, Bo Qiao, Qingwei Lin, Hongyu Zhang, Ze Li,

Yingnong Dang, Shaowei Cai, WeiWu, et al. 2020. Efficient incident identification

from multi-dimensional issue reports via meta-heuristic search. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 292–303.

[23] Jiazhen Gu, Jiaqi Wen, ZijianWang, Pu Zhao, Chuan Luo, Yu Kang, Yangfan Zhou,

Li Yang, Jeffrey Sun, Zhangwei Xu, et al. 2020. Efficient customer incident triage

via linking with system incidents. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 1296–1307.

[24] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto, Agung Laksono, Anang D

Satria, Jeffry Adityatama, and Kurnia J Eliazar. 2016. Why does the cloud stop

computing? lessons from hundreds of service outages. In Proceedings of the
Seventh ACM Symposium on Cloud Computing (SOCC). 1–16.

[25] Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, Ke Xu, Daxin Jiang, Ming

Zhou, and Nan Duan. 2021. CoSQA: 20,000+ Web Queries for Code Search and

Question Answering. In Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers). 5690–5700.

[26] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R Lorch, Yingnong Dang,

Murali Chintalapati, and Randolph Yao. 2017. Gray failure: The achilles’ heel

of cloud-scale systems. In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems (HotOS). 150–155.

[27] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical Reparameterization

with Gumbel-Softmax. In International Conference on Learning Representations.
[28] Pengxiang Jin, Shenglin Zhang, Minghua Ma, Haozhe Li, Yu Kang, Liqun Li,

Yudong Liu, Bo Qiao, Chaoyun Zhang, Pu Zhao, et al. 2023. Assess and Summarize:

Improve Outage Understanding with Large Language Models. arXiv preprint
arXiv:2305.18084 (2023).

[29] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-

Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 6769–6781.

[30] Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021. Self-Guided Contrastive

Learning for BERT Sentence Representations. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2528–
2540.

[31] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[32] Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classification with

Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

[33] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R Lyu. 2023.

Maat: Performance Metric Anomaly Anticipation for Cloud Services with Condi-

tional Diffusion. In 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 116–128.

[34] Liqun Li, Xu Zhang, Xin Zhao, Hongyu Zhang, Yu Kang, Pu Zhao, Bo Qiao,

Shilin He, Pochian Lee, Jeffrey Sun, Feng Gao, Li Yang, Qingwei Lin, Sara-

vanakumar Rajmohan, Zhangwei Xu, and Dongmei Zhang. 2021. Fighting

the Fog of War: Automated Incident Detection for Cloud Systems. In 2021
USENIX Annual Technical Conference (USENIX ATC). USENIX Association, 131–

146. https://www.usenix.org/conference/atc21/presentation/li-liqun

[35] Yichen Li, Xu Zhang, Shilin He, Zhuangbin Chen, Yu Kang, Jinyang Liu, Liqun Li,

Yingnong Dang, Feng Gao, Zhangwei Xu, et al. 2022. An Intelligent Framework

for Timely, Accurate, and Comprehensive Cloud Incident Detection. ACM SIGOPS
Operating Systems Review 56, 1 (2022), 1–7.

[36] Zeyan Li, Nengwen Zhao, Mingjie Li, Xianglin Lu, Lixin Wang, Dongdong Chang,

Xiaohui Nie, Li Cao, Wenchi Zhang, Kaixin Sui, et al. 2022. Actionable and

interpretable fault localization for recurring failures in online service systems. In

Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 996–1008.

[37] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. 2019. What bugs

cause production cloud incidents?. In Proceedings of the Workshop on Hot Topics
in Operating Systems (HotOS). 155–162.

[38] Jinyang Liu, Shilin He, Zhuangbin Chen, Liqun Li, Yu Kang, Xu Zhang, Pinjia

He, Hongyu Zhang, Qingwei Lin, Zhangwei Xu, Saravan Rajmohan, Dongmei

Zhang, and Michael R. Lyu. 2023. Incident-Aware Duplicate Ticket Aggregation

for Cloud Systems. In Proceedings of the 45th International Conference on Software
Engineering (Melbourne, Victoria, Australia) (ICSE ’23). 2299–2311.

[39] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and

Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of

prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),
1–35.

[40] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie

Tang. 2022. P-tuning: Prompt tuning can be comparable to fine-tuning across

scales and tasks. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). 61–68.

[41] Jian-Guang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao

Xie. 2013. Software analytics for incident management of online services: An

experience report. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 475–485.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems (NeurIPS) 32 (2019).

[43] Jiaxing Qi, Zhongzhi Luan, Shaohan Huang, Carol Fung, Hailong Yang, Hanlu

Li, Danfeng Zhu, and Depei Qian. 2023. LogEncoder: Log-based Contrastive

Representation Learning for anomaly detection. IEEE Transactions on Network
and Service Management (2023).

[44] Nils Rethmeier and Isabelle Augenstein. 2023. A Primer on Contrastive Pre-

training in Language Processing: Methods, Lessons Learned, and Perspectives.

Comput. Surveys 55, 10 (2023), 1–17.
[45] GM Shahariar, Tahmid Hasan, Anindya Iqbal, and Gias Uddin. 2023. Contrastive

Learning for API Aspect Analysis. In 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 637–648.

[46] Manish Shetty, Chetan Bansal, Sumit Kumar, Nikitha Rao, and Nachiappan Nagap-

pan. 2022. SoftNER: Mining knowledge graphs from cloud incidents. Empirical
Software Engineering 27, 4 (2022), 93.

[47] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.

Journal of machine learning research 9, 11 (2008).

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).
[49] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations.

[50] Weijing Wang, Junjie Chen, Lin Yang, Hongyu Zhang, Pu Zhao, Bo Qiao, Yu

Kang, Qingwei Lin, Saravanakumar Rajmohan, Feng Gao, et al. 2021. How long

will it take to mitigate this incident for online service systems?. In 2021 IEEE
32nd International Symposium on Software Reliability Engineering (ISSRE). IEEE,
36–46.

[51] Zihan Wang, Peiyi Wang, Lianzhe Huang, Xin Sun, and Houfeng Wang. 2022.

Incorporating Hierarchy into Text Encoder: a Contrastive Learning Approach for

Hierarchical Text Classification. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 7109–7119.

[52] Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie Wang, and Song Wang.

2022. Clear: contrastive learning for api recommendation. In Proceedings of the
44th International Conference on Software Engineering. 376–387.

[53] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.

2019. Huggingface’s transformers: State-of-the-art natural language processing.

arXiv preprint arXiv:1910.03771 (2019).
[54] Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian Khabsa, Fei Sun, and Hao Ma.

2020. Clear: Contrastive learning for sentence representation. arXiv preprint
arXiv:2012.15466 (2020).

[55] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,

Yanming Shen, and Tie-Yan Liu. 2021. Do transformers really perform badly

for graph representation? Advances in Neural Information Processing Systems 34
(2021), 28877–28888.

[56] Alessandro Zangari, Matteo Marcuzzo, Michele Schiavinato, Matteo Rizzo, An-

drea Gasparetto, Andrea Albarelli, et al. 2023. Hierarchical Text Classification: a

review of current research. EXPERT SYSTEMS WITH APPLICATIONS 224 (2023).
[57] Xu Zhang, Chao Du, Yifan Li, Yong Xu, Hongyu Zhang, Si Qin, Ze Li, Qingwei

Lin, Yingnong Dang, Andrew Zhou, et al. 2021. Halo: Hierarchy-aware fault

localization for cloud systems. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining. 3948–3958.

https://www.usenix.org/conference/atc21/presentation/li-liqun

FaultProfIT: Hierarchical Fault Profiling of Incident Tickets in Large-scale Cloud Systems ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

[58] Xu Zhang, Yong Xu, Si Qin, Shilin He, Bo Qiao, Ze Li, Hongyu Zhang, Xukun Li,

Yingnong Dang, Qingwei Lin, et al. 2021. Onion: identifying incident-indicating

logs for cloud systems. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 1253–1263.

[59] Yujin Zhao, Ling Jiang, Ye Tao, Songlin Zhang, Changlong Wu, Yifan Wu, Tong

Jia, Ying Li, and Zhonghai Wu. 2023. How to Manage Change-Induced Incidents?

Lessons from the Study of Incident Life Cycle. In 2023 IEEE 34th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 264–274.

[60] Jie Zhou, Chunping Ma, Dingkun Long, Guangwei Xu, Ning Ding, Haoyu Zhang,

Pengjun Xie, and Gongshen Liu. 2020. Hierarchy-aware global model for hi-

erarchical text classification. In Proceedings of the 58th annual meeting of the
association for computational linguistics. 1106–1117.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Incident and Incident Management
	2.2 Fault Pattern Profiling

	3 Methodology
	3.1 Overview
	3.2 Incident Data Fetching and Preprocessing
	3.3 Incident Encoder
	3.4 Hierarchy Encoder for Fault Patterns
	3.5 Positive Sample Construction
	3.6 Contrastive Learning
	3.7 Classification and Training Objective

	4 Evaluation
	4.1 Experiment Designs
	4.2 RQ1: How effective is FaultProfIT in fault pattern profiling?
	4.3 RQ2: How does hierarchy-guided contrastive learning affect FaultProfIT?
	4.4 RQ3: How does FaultProfIT perform on diverse types of incidents?

	5 Deployment Experience
	6 Related Works
	7 Conclusion
	References

