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Abstract—Logs are imperative in the maintenance of online
service systems, which often encompass important information
for effective failure mitigation. While existing anomaly detec-
tion methodologies facilitate the identification of anomalous
logs within extensive runtime data, manual investigation of log
messages by engineers remains essential to comprehend faults,
which is labor-intensive and error-prone. Upon examining the
log-based troubleshooting practices at CloudA1, we find that
engineers typically prioritize two categories of log information
for diagnosis. These include fault-indicating descriptions, which
record abnormal system events, and fault-indicating parameters,
which specify the associated entities. Motivated by this finding,
we propose an approach to automatically extract such fault-
indicating information from logs for fault diagnosis, named LoFI.
LoFI comprises two key stages. In the first stage, LoFI performs
coarse-grained filtering to collect logs related to the faults based
on semantic similarity. In the second stage, LoFI leverages a
pre-trained language model with a novel prompt-based tuning
method to extract fine-grained information of interest from the
collected logs. We evaluate LoFI on logs collected from Apache
Spark and an industrial dataset from CloudA. The experimental
results demonstrate that LoFI outperforms all baseline methods
by a significant margin, achieving an absolute improvement of
25.8˜37.9 in F1 over the best baseline method, ChatGPT. This
highlights the effectiveness of LoFI in recognizing fault-indicating
information. Furthermore, the successful deployment of LoFI at
CloudA and user studies validate the utility of our method2.

Index Terms—log analysis, failure diagnosis, fault-indicating
information, cloud service system

I. INTRODUCTION

As software systems grow in complexity, especially for on-
line services with hundreds of distributed components serving
global users, the challenge of preventing failures intensifies.
Despite extensive efforts, these systems still encounter large-
scale unplanned interruptions and service quality degrada-
tion [1]–[4]. To enhance user experience and minimize eco-
nomic losses, IT companies must promptly and effectively re-
spond to failures, thereby ensuring reliability of their software.

Logs, which document a variety of software runtime events,
have been widely acknowledged as a crucial resource for diag-
nosing failures in online service systems [5]–[8]. For example,
an empirical study on a commercial bank service revealed that
at least 31% of failure diagnosis practices depend on logs [9].

†Zhuangbin Chen is the corresponding author.
1Due to the company policy, we anonymize the name as CloudA.
2The code and data are available at https://github.com/Jun-jie-Huang/LoFI

However, the sheer scale and complexity of modern software
lead to the generation of massive logs from multiple services,
making it challenging for engineers to promptly examine logs
and gain actionable insights about faults [10], [11].

To facilitate rapid diagnosis, various log analysis approaches
have been proposed. These approaches strive to identify and
extract valuable information from massive log data in diverse
granularities, aiming to reduce manual efforts in fault local-
ization and investigation [9], [12]–[14]. Although they have
made significant progress, the information they yield can still
be extensive or irrelevant to faults, hindering the direct usage
for system troubleshooting. For example, log-based anomaly
detection [12], [15]–[17] can identify anomalous log sessions
(e.g., an input list of logs that the model deems as anomalous)
from a large volume of streaming logs. However, even though
the identified sessions are small in time (e.g., 10s), they could
still contain hundreds of logs, with only a small portion being
relevant to the fault [18]. Log clustering [8], [10], [19] takes
one step further to filter out irrelevant logs and localize the
incident-indicating ones. This is done by first grouping similar
logs and then selecting the representatives. However, the semi-
structured nature of log messages can make them intricate
and include redundant information about system execution. As
a result, it requires additional manual efforts to comprehend
various parts of a log message. Log parsing [20]–[22], on the
other hand, can extract different elements of a raw log, such as
log events and parameters. Yet, it remains unknown whether
an event describes a critical failure symptom or a parameter
captures the faulty component (e.g., device or VM). Semantic-
aware log parsers [23]–[25] take a step further to identify
parameter types (e.g., object ID and type indicator) during
parsing. However, the identified parameter types cannot always
relate to faulty components. As a result, there is still a lack of
tools that can automatically extract more precise and crucial
information from logs to guide engineers in taking immediate
actions for fault diagnosis.

In this paper, we propose to extract fault-indicating informa-
tion from logs, namely the parts of logs that convey direct and
valuable insights into system faults. Utilizing this information,
engineers can quickly understand the underlying issues and ex-
amine the faulty components for effective fault mitigation. To
figure out what information is fault-indicating, we first conduct
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Fig. 1. The workflow of failure diagnosis with logs.

a preliminary study based on the fault mitigation practices at
CloudA, a top-tier global cloud vendor. By analyzing historical
fault diagnosis reports and the associated logs, we summa-
rize two categories of fault-indicating information that are
frequently employed in troubleshooting, i.e., fault-indicating
descriptions (FID) and fault-indicating parameters (FIP). FID
describes the symptoms of a fault, which is further divided into
four subtypes including error message, missing component,
abnormal behavior, and wrong status. While FIP pinpoints the
exact location of the fault that demands investigation, which
have three typical subtypes, i.e., address, component ID, and
parameter name. As illustrated by the example in Figure 1,
the FID of the anomalous session is “Error creating bean”,
and the FIP is “ServicePath5”.

Designing an automated tool to extract fault-indicating in-
formation from log messages presents two key challenges. (1)
The first challenge relates to the vast volume of log messages
generated by modern online service systems. For example,
these systems can produce up to 200 million lines of logs per
hour [26]. Although anomaly detection offers potential bene-
fits, the number of logs requiring investigation in an anomalous
session can still be substantial, often ranging from hundreds
to thousands [21]. Our study reveals that, for log messages in
an anomalous session, only a small percentage (i.e., 1.7%)
contains information indicative of faults [8], [27]. (2) The
second challenge involves dealing with noisy semantics in log
messages, as engineers often write detailed logging statements
to provide supplementary runtime information [28]. Conse-
quently, the content of log messages tends to be verbose, with
only a small portion of keywords or phrases describing the
underlying issues. Our study reveals that only approximately
14.1% of the words in log messages indicate a fault or issue,
posing significant challenges on the identification of target
information. Overcoming these two challenges is crucial in
developing an efficient and accurate tool for extracting fault-
indicating information from log messages.

To address the challenges, we propose LoFI, a two-stage
approach for efficient and accurate extraction of Log Fault-
Indicating information, i.e., FID and FIP, to aid in fault diagno-
sis and reduce manual mitigation effort. LoFI mainly consists
of two stages: log selection and prompt-based extraction. In
the first stage, LoFI uses a coarse-grained filtering mechanism
to select logs potentially relevant to faults, thereby reducing
noise. This is done by first collecting logs with severe logging
levels, and then incorporating more relevant logs based on
their semantic similarity. By eliminating less important logs in
anomalous sessions, the extraction of fine-grained information

in the next stage becomes more effective and efficient. In the
second stage, LoFI extracts fault-indicating information from
the selected log messages by tuning a pre-trained language
model (PLM). Inspired by the success of prompt learning [29],
we adopt a question-answering schema to query the PLM,
instructing it to iteratively yield FID and FIP. This enables
us to design specific prompts that convey precise instructions
about the desired information. As a result, the PLM can ignore
noises within log messages and provide more accurate results.

We evaluate LoFI on logs from Apache Spark, a distributed
data processing system [30], and an industrial dataset from
CloudA. Given that the extraction of fault-indicating informa-
tion is a novel task in log analysis, we created a benchmark
dataset based on Apache Spark, namely FIBench. This is
achieved by initially injecting faults [31] in to the system and
then manually pinpointing fault-indicating information from
the injection history. To further validate LoFI’s practical sig-
nificance, we also conduct experiments on an industrial dataset
from CloudA, named Industry. The dataset is collected from
historical postmortem reports and validated by experienced on-
site engineers. Overall, LoFI achieves an F1 score of 87.4/80.6
for FID/FIP extraction on FIBench and 72.2/62.8 on Industry,
significantly outperforming all baseline methods (81% on aver-
age higher than the best baseline method, ChatGPT-ICL [32]).
Our ablation experiments and user study further confirm the
effectiveness and practical usefulness of our method.

This work makes the following main contributions:
• We conduct a preliminary study based on six-month-long

fault diagnosis reports at CloudA (§III), and summarise
two categories of fault-indicating information that provides
valuable insights to on-site engineers, i.e., fault-indicating
description (FID) and fault-indicating parameter (FIP).

• We propose LoFI, an approach to automatically extract
fault-indicating information from anomalous log sessions
(§IV). LoFI utilizes a novel prompt-based tuning method
to effectively learn semantic information from logs with
limited training data.

• Extensive experiments are conducted on datasets collected
from Apache Spark and an industrial system (§V). The
results show that LoFI outperforms state-of-the-art methods,
including ChatGPT, by a large margin. We also demonstrate
the practical value of LoFI through a user study at CloudA.

II. BACKGROUND AND MOTIVATION

A. Log Analysis for Fault Diagnosis
Online service systems typically generate logs to record

runtime status for troubleshooting. A log entry generally
comprises three parts: a timestamp recording the time that the



entry is recorded, a level indicating the severity of a log entry
(e.g., INFO, WARN and ERROR), and content containing
human-readable information that describes the specific system
status. Logs serve as an important data source for failure
detection and diagnosis in software systems [10].

However, manually investigating a huge number of logs
is labor-intensive and time-consuming, which can lead to
prolonged fault mitigation time. Thus many methods have
been proposed to identify and understand useful information
from logs to expedite the process. Log parsing is the first
step to enable automated log analysis [21], which converts
raw logs into log templates describing events and variables
recording dynamic runtime information. Since the log parsing
results cannot be directly used for diagnosis [23], log-based
anomaly detection methods [10], [33] are proposed to identify
abnormal system behaviors from logs and reduce millions of
logs to a small window for engineers to investigate. However,
as revealed by recent studies [34], [35], on-site engineers still
have to manually investigate the runtime failure by reading
tens or even hundreds of raw and noisy logs before taking
further troubleshooting measures. Considering the defects of
existing methods, there is an urgent need to automatically
identify the detailed and crucial information from logs in order
to assist in-time diagnosis and rapid mitigation.

B. A Motivating Example

In this section, we introduce the current practices of log-
based fault diagnosis at CloudA, which motivate this work.
Figure 1 shows a typical workflow to diagnose a fault at
CloudA. The fault in this case was caused by a flawed con-
figuration update to the job scheduling module of service X,
leading to degraded performance and a decrease in successful
requests. Upon detecting the failure, on-site engineers followed
a systematic approach. They first identified relevant services
based on their experience, including the manage-board service,
monitoring service, and database. They then retrieved logs
from these services for diagnosis. In this process, anomaly
detection methodologies can help pinpoint anomalous log
sessions. Next, they conducted a coarse-grained search to
locate critical log messages containing essential information
about the fault, using keywords “kill”, “fail”, “error”, and “ex-
ception”. Subsequently, a fine-grained analysis was performed
by carefully reading the logs to understand the issue and
determine the root cause. For example, by reading logs from
the manage-board service, engineers discovered that the bean
configuration creation failed, specifically in the problematic
instance ServicePath5. During investigation, this process was
repeated for all services to ensure a comprehensive analysis.
Finally, they identified misconfiguration as the root cause and
proceeded to fix the fault and restart the service.

Based on the aforementioned process, we can observe
that while log-based anomaly detection expedites the coarse-
grained search to identify anomalous log sessions, a more
detailed and precise fine-grained investigation remains nec-
essary for fault diagnosis. The growing scale and complexity
of online service systems mean that a single fault may en-

compass numerous log sessions, each containing tens or even
thousands of log messages. Consequently, addressing these
issues requires significant manual effort. Based on the on-site
engineers of CloudA, manual fault investigation through logs
accounts for nearly two-thirds of the overall fault handling
time. This observation aligns with the findings from recent
studies [8], [36]. Thus, this work aims to address the challenge
of automatically extracting fine-grained information from log
sessions to enhance the process of fault diagnosis.

III. FAULT-INDICATING INFORMATION IN LOGS

In this section, we aim to summarize the essential infor-
mation capable of assisting engineers in taking appropriate
actions and pinpointing the fault, i.e., fault-indicating informa-
tion. To this end, we conduct a preliminary study to examine
how engineers leverage logs in their fault handling processes.
The study comprises three steps: dataset preparation, manual
investigation, and result analysis.
Dataset Preparation. We start by collecting historical faults
and the corresponding diagnostic reports from service X,
a large-scale online service system of CloudA. Service X
adopts the microservice architecture with rich functionalities
such as user management, analytics, resource scheduling,
logging and monitoring, etc. The data span from 2022-09-03
to 2023-03-02, resulting in a total of 88 faults. These faults
cover diverse root causes, including network disconnection,
device failures, configuration errors, etc. For each fault, on-
site engineers documented diagnosis details such as affected
components, associated log files, and a fault summary that
included diagnosis process, root causes, and mitigation steps.
We manually investigate these reports to gain insights into how
log messages are utilized during fault mitigation.
Manual Investigation. The goal of the manual investigation
is to identify fault-indicating information that aids in fault di-
agnosis. Generally, we pinpoint such information by manually
analysing diagnosis reports and corresponding log sessions to
identify the log segments that are notified in the reports. The
motivation of the pinpointing strategy is that only important
details will be recorded in the reports, where the notified events
or components are more likely to indicate faults.

Specifically, we first collect logs that are generated from
around ten minutes before and after each fault given the
recorded timestamps. These logs are likely to cover all system
events associated with the fault. We then examine these logs
and the diagnostic report to identify the specific log messages
that are directly related to the fault or explicitly referred
to in the mitigation step. For example, if a mitigation step
mentions restarting a virtual machine with ID=6afd89eh, we
will mark this ID. This process allows us to locate relevant log
information used by on-site engineers in fault resolution. Two
authors conduct the manual investigation separately for all col-
lected faults. Subsequently, two senior on-site engineers from
CloudA review the results for correctness. Any discrepancies
are resolved through discussion until a consensus is reached.
Result Analysis. From our manual investigation, we identified
two main categories of fault-indicating information frequently



TABLE I
CATEGORIES OF FAULT-INDICATING INFORMATION IN LOGS.

Category Subtype Example Number

Description
(FID)

Error Message . . . url detection error!agent taskId:f292c7e596d5435d9b9e9b9f47e1f872, retCode is empty 32/88
Missing Component . . . execute template error, reason is Host name must not be empty 20/88
Abnormal Behavior . . . reader request line for 192.168.132.245:8080(https) failed, read line timed-out 24/88
Wrong Status . . . httpCode is 404. requestEntity’s type is GET. requestEntity’s url is /users/orders/task. please check! 12/88

Parameter
(FIP)

Address . . . httpCode is 404. requestEntity’s type is GET. requestEntity’s url is /users/orders/task. please check! 15/68
Component ID . . . query . . . failed. historyid=51890bae-57c6-47a3-b37d-62df9d2f3c87 28/68
Parameter Name . . . cannot get topicInfo for consumer by topic: alarm and event data 25/68

1 Fault-indicating descriptions (FID) is marked in BOLD and fault-indicating parameters (FIP) is in UNDERLINE.

used in the mitigation process: fault-indicating description
(FID), which primarily describes the fault, and fault-indicating
parameter (FIP), which denotes positions or components re-
quiring further investigation. Notably, fault-indicating param-
eters could only be extracted from 68 out of 88 faults, as
the remaining faults do not explicitly mention parameters
in the logs during mitigation. Within these two categories,
we have further classified FID and FIP into four and three
subtypes, respectively, based on their specific content as shown
in Table I. We introduce these subtypes as follows:
• Error Message directly describes a failed action or an

exception raised from a software stack.
• Missing Component means some components are unavail-

able such as devices, tasks and hosts.
• Abnormal Behavior indicates the degraded performance of

an application e.g., HTTP timeout, slow response time.
• Wrong Status means a specific response code is incorporated

to explain the wrong event, e.g., status code, error flags.
• Address includes a concrete URL of HTTP requests, IP

address or paths to a folder.
• Component ID records the index for a system component

e.g., job ID, task ID, service ID.
• Parameter Name shows the key and value for a parameter

e.g., data name, user name.
Based on the identified fault-indicating information, we

further investigate the presence of noise in the logs. Specifi-
cally, we compute the ratio of log messages containing either
FID or FIP in their raw form. Our analysis reveals that, on
average, only 1.7% of the log messages contain the target
information. Additionally, the fault-indicating words account
for only 14.1% of these messages’ content. These findings
indicate a significant amount of noise in the logs, potentially
hindering on-site engineers’ ability to identify precise infor-
mation needed to address the underlying faults.

In summary, we have identified two common categories of
fault-indicating information in fault diagnosis: fault-indicating
description, reflecting fault symptoms, and fault-indicating
parameters, indicating faulty components. Therefore, our focus
is on extracting these two types of information.

IV. METHODOLOGY

In this section, we describe our method LoFI to auto-
matically extract fault-indicating information from logs, i.e.,
FID and FIP defined in § III. There are two major challenges
in fault-indicating information extraction: 1) the log sessions
produced by anomaly detection methods may still contain
numerous, noisy log messages; 2) since each log message

contains complex and redundant contents, it is hard to identify
the fault-indicating information.

A. Problem Formulation
We formulate the problem of identifying fault-indicating

information in logs as follows. The input is an anomaly session
with n log messages L = [l1, l2, . . . , ln]. Each log, represented
as li = [w1, . . . , wmi ], comprises a sequence of mi tokens.
The output is the fault-indicating information denoted as a
tuple (d, p), where d = [w1, . . . , wNd

] represents the FID
of system status and p = [w1, . . . , wNp

] denotes the FIP
for localization. Nd and Np are the token numbers of FID
and FIP, respectively. The task aims to extract fault-indicating
information (d, p) to enable engineers to understand the faults
and locations so that they can take appropriate actions.

B. Overview
To overcome the aforementioned challenges, we propose a

novel method called LoFI, which is based on a pre-trained lan-
guage model (PLM) and is designed to extract fault-indicating
information from anomalous log sessions produced by preced-
ing anomaly detectors. The main idea behind LoFI is to utilize
a large PLM to comprehend the semantics of log sessions
and then extract the desired fault-indicating information by
designing a prompt that accurately captures the intentions of
on-site engineers. Specifically, the LoFI method is composed
of two main stages: log selection and prompt-based extraction.
In the log selection stage, LoFI selects candidate logs that are
likely to be related to the fault in a coarse-grained manner. This
stage helps to filter out less relevant logs, thus enabling a more
effective and efficient extraction process. In the prompt-based
extraction stage, LoFI extracts FID and FIP from candidate
log messages. This is accomplished by querying a fine-tuned
PLM, such as UniXcoder [37], with a well-designed prompt
that precisely points to the fault-indicating information within
the log messages. In this way, we allow the PLM to accurately
return the desired information of on-site engineers.

C. Log Preprocessing

The preprocessing module converts raw log messages from
a session into a formatted input for LoFI. The input part of
Figure 2 depicts an example of processed log messages. Given
a raw log, the preprocessing module first uses regular expres-
sions to split an unstructured log message into timestamp,
logging level, and log content and then deduplicates log con-
tents. In our work, we keep the original log content for fault-
indicating information extraction without parsing it into static
log template and the corresponding dynamic variables [20],
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Fig. 2. The overall framework of LoFI.

since log parsing replaces common parameters with a unified
identifier (e.g., “∗”) which may mask informative variables
(e.g., device ids) and cut out the semantic relations between
logs, leading to poor extraction performance.

D. Log Selection

Sessions flagged as abnormal by upstream log-based
anomaly detectors often contain a large number of logs,
sometimes exceeding hundreds or thousands of lines [19].
Understanding a large volume of logs is challenging for PLMs,
as they often contain irrelevant information that complicates
fault diagnosis. Additionally, PLMs have been shown to strug-
gle with long texts [38], emphasizing the need for a more
concise input. To address the issues, we propose a log selection
approach to filter out most irrelevant log messages to the
fault, which includes two steps: level selection (§IV-D1) and
semantic selection (§IV-D2).

1) Level Selection.: Our study in §III shows that logs with
more severe logging levels will be examined with a higher
priority. Therefore, we first apply level selection to select logs
with the highest logging level among those in a log session,
which are denoted as Lsevere; and the left logs are denoted as
Lmild. The priority of logs is assigned by the standard ranking
of logging levels defined in Log4j [39], i.e., FATAL, ERROR,
WARN, INFO, DEBUG, TRACE, Others.

2) Semantic Selection.: However, relying solely on level
selection can result in overlooking logs that, although not
marked at a severe level, carry fault-indicating information.
Those logs often have similar contents as severe logs, despite
their less severe levels. Thus, we apply semantic selection,
which involves calculating log embeddings and then perform-
ing similarity search to include these pertinent logs.

To produce log embeddings, we use UniXcoder [37], a PLM
trained on a mixture of natural language (NL) and code corpus.
While alternative PLMs such as RoBERTa [29], [40] could
also be considered, we believe UniXcoder is better suited to
understand log messages that contain both NL and code-like
parameters, enabling producing enhanced log representations.
Thus we follow [37] and use the default method to obtain
log vectors by adopting the vector of the first token as the
representation of the log message: li = UniXcoder(li)[0].

Upon obtaining log embeddings, we perform similarity
search to include more relevant logs. For each log li ∈ Lmild,
we compute its pairwise cosine similarity to the severe logs
as sim(li, lj) = cosine(li, lj), lj ∈ Lsevere. We use cosine
similarity as the distance metric since it measures the angle
of two text vectors and is independent of their magnitude,
making it suitable to measure textual semantic similarity [41].
Then we take the maximum similarity as the final score
sim(li, Lsevere) = maxli∈Lsevere(sim(li, lj)), as we aim to
highlight the most similar logs in Lmild to Lsevere. Finally,
we rank the logs by the score and take the top 10% logs as
Lsimilar. We merge Lsevere and Lsimilar while preserving
the original time order to create candidate logs. Despite the
possibility of introducing noise, we still apply semantic selec-
tion since insufficient context could lead to further information
loss. We show a comparison of selection methods in § V-C.

E. Prompt-based Extraction
After log selection, we extract fault-indicating information

from the candidate logs. This is achieved by leveraging PLMs
and prompt-tuning, which have been proven effective in recent
log studies [29], [42]. The essence behind this idea is twofold.
First, fault-indicating information has some similar semantic
patterns, e.g., using human-readable words to describe a failed
operation or report a status code, which can be captured
by PLMs through supervised signals. Second, the semantic
patterns can vary across different logs, which is hard to detect
by rule-based methods and cover all possible patterns. To
implement this approach, we first choose a PLM (§ IV-E1) and
design prompt questions for FID and FIP (§ IV-E2). Then we
combine the question and logs as input to the PLM to predict
position spans of target fault-indicating information (§ IV-E3).
Finally, we fine-tune the PLM with a few labeled examples to
improve the performance on this task (§ IV-E4).

1) Pre-trained Language Model (PLM): PLMs [40] have
shown remarkable abilities to understand the semantic mean-
ing of logs [29], [42]. In this work, we employ UniXcoder [37]
as our backbone for two main reasons. Firstly, UniXcoder is
trained on a blend of NL and code corpus, making it more
robust and capable of comprehending logs that contain similar
parametric content. Secondly, UniXcoder utilizes byte-level
Byte-Pair Encoding (BPE) [43] for text tokenization, allowing
it to avoid the out-of-vocabulary (OOV) problem by breaking
OOV words into subwords.

2) Prompt Tuning with Questions Answering: Prompt tun-
ing is an effective method to apply PLM to downstream
tasks by adding NL instructions to the input, which can



Pre-trained Language Model

… return httpCode is 404. requestEntity's type is GET. requestEntity's …

What is the most representative description 

strings in the following logs? 

0.01

0.91

……

……

0.01

0.02

0.02

0.01

……

……

……

……𝑷𝒔𝒕𝒂𝒓𝒕
𝑷𝒆𝒏𝒅 0.92

0.01

……

……

……

……
httpCode is 404. requestEntity's type is GET.

1. Example
2. 箭头省略号
3. “用1个Q”“取1个”span的示意图->一个answer span

1. 文中再细讲取多个
4. Pstart*Pend

xxx httpCode is 404. requestEntity's type is

What are the most representative description𝑸𝒅𝒆𝒔𝒄 𝒍𝟓 log𝒍𝟐 log 𝒍𝟒 log

… encountered during context initialization - Error creating bean with name  "ServicePath5" …

… … …

…… …

… … …

Fig. 3. Extracting fault-indicating information with the extraction module.

better utilize the knowledge in PLMs [44]. In this work,
we transform fault-indicating information extraction into a
question-answering task [45] by adding a prompt question.
This approach enables UniXcoder to predict both FID and FIP
from logs using a single unified model, eliminating the need
for separate modules and enabling the sharing of common
knowledge between the two types of information.

To effectively guide the PLMs, we design different prompt
questions to identify FID and FIP. Specifically, for FID,
the prompt question is “What are the most significant and
representative description strings to describe the fault from
the logs?” For FIP, the prompt question is “What are the
most crucial and representative parameters to locate the faulty
instances from the logs?”

3) Predicting Span to Extract Fault-indicating Information:
We use a span prediction mechanism [46] to extract FID
and FIP spans with the PLM. This method, commonly used
in question answering tasks [45], predicts the start and end
positions of the target span. By adding two additional vectors
during fine-tuning, one for training a start position classifier
and another for training an end position classifier, this method
effectively aligns pre-training knowledge with our task re-
quirements while maintaining a low parameter count. which
is particularly beneficial when training data is scarce.

Figure 3 shows the extraction process to obtain one span.
Given a prompt question and logs Lsevere + Lsimilar, we
concatenate them with a special delimiter token [SEP] to
obtain a single packed input sequence X to UniXcoder:

X = [CLS] Question [SEP] l1 [SEP] ... li [SEP] (1)

The input sequence X is then fed into UniXcoder to obtain
hidden representations X ∈ Rn×d, where n is the number
of tokens and d is the embedding dimension. We introduce a
start vector s ∈ Rd and an end vector e ∈ Rd for prediction.
The probability of token i being the start of the answer
span is computed as a dot product between its representation
X[i,:] and s followed by a softmax function over all tokens:
Pstart = e

s·X[i,:]∑
j e

s·X[j,:]
. Similarly, the probability of the end of

a answer span can be computed by the analogous formula.
The probability of a candidate span from position i to j is the
product of start and end position probability: Pi,j = Pi · Pj .
Tokens in top-k scoring spans where j >= i are concatenated
as the prediction.

4) Training Objective: We use the start position Xstart and
end position Xend of ground truth FID or FIP as the target
positions for each example X . The UniXcoder is trained to

maximize the probability of the correct answer span, which
is the sum of log-likelihoods of the correct start and end
positions. The loss function is computed as follows:

Loss = − 1

N

∑
N

(logPXstart + logPXend), (2)

where N is the number of labeled training examples.
F. Online Extraction

Identifying fault-indicating information from a large volume
of logs can greatly assist engineers in monitoring system
status and reducing diagnosis efforts in real-world software
maintenance. Here, we apply LoFI to extract FID/FIP in an
online setting, where logs are continuously produced by soft-
ware systems. To simulate the online phase, we first perform
automatic log anomaly detection to prepare anomalous log
sessions and then apply LoFI to extract FID and FIP from
the sessions. We take a simple yet effective method to detect
anomalies with Decision Tree (DT) [47], which can efficiently
scale to millions of logs in a short period of time [15].
Specially, we parse the logs into log templates with Drain [20]
and compute a count feature vector for each session of logs.
The count vector is subsequently used as input for DT, which
is trained with 100 manually annotated anomalous sessions
as positive examples. After anomaly detection, we use LoFI
to predict FID and FIP. Note that we only perform extraction
for potentially anomalous log sessions, which is still efficient
when scaled to a large volume of streaming logs.

V. EVALUATION

We evaluate our method by answering the following re-
search questions (RQs):
• RQ1: How effective is LoFI in the offline setting?
• RQ2: How log selection affects the results of LoFI?
• RQ3: How prompt-based tuning affects the results of LoFI?
• RQ4: How LoFI helps SREs to diagnose in online setting?
A. Experiment Designs

1) Dataset: To evaluate the effectiveness of LoFI in ex-
tracting fault-indicating information from logs, we conduct
experiments on two datasets, which are collected from a public
software Apache Spark and a large-scale industrial system.
FIBench. We collect FIBench from Apache Spark, a widely-
used distributed framework for big data processing [30], which
produces extensive log data to record its runtime information.
[31] conducted fault injection to Spark to gather logs in both
normal and anomalous running states for log-based anomaly
detection. They injected 21 types of faults, including network
issues, process killing, etc. However, the labeled anomalous
log sections still contain numerous logs without FID and
FIP. Building on the work [31], we further annotate the FID
and FIP within these logs by examining the fault-injecting
steps. Specifically, we focus on the logs containing entities
that were first operated for fault injection. Next, by referring
to the categories of fault-indicating information outlined in
Table I, we can identify the FID and FIP in logs accurately.
For instance, if a process in a physical machine is terminated,
we can associate the process ID and machine’s IP address
with the logs, thereby identifying the corresponding FID and



FIP. Finally, we obtained 71 fault cases with explicit fault-
indicating information.
Industry. To confirm LoFI’s practical significance, we also
collect an industrial dataset with 88 fault cases from 33
microservices within the production system of CloudA. The
detailed collection process of Industry can be found in §III.
Table II shows the statistics of our dataset.

TABLE II
DATASET STATISTICS

Dataset Total Logs Logs per Session Faults FID FIP

FIBench 1,225,287 39.9 71 71 37
Industry 2,721,013 64.3 88 88 68

2) Baseline Methods: We compare LoFI with the following
baseline methods on fault-indicating information extraction.
• TF-IDF [48] is a keyword extraction method based on word

frequency. We treat a log session as a corpus and each log as
a document. The importance weights of words are calculated
using TF-IDF, and the top-k words with the highest weights
are chosen as FID and FIP. We set k = 6 as is close to the
average length of FID and FIP.

• TextRank [49] is a summarization method based on textual
similarity. We use Log2Vec [50] to produce word embed-
dings, and then rank the words based on the importance
scores computed by TextRank. We use the top-k words with
the highest score as FID and FIP where k = 6.

• LogSummary [35] is a log summarization method, which
first extracts summaries in triple format from log templates
and then ranks the triples based on Log2Vec [50]. We obtain
the highest scoring one as the FID and FIP.

• ChatGPT [32] is a cutting-edge conversational AI based on
large language models, which has been widely acknowl-
edged for its groundbreaking abilities in text understanding.
Specially, we consider a zero-shot and an In Context Learn-
ing (ICL) setting, where the former construct the prompt
input with questions (§ IV-E2) and logs, and the latter addi-
tionally incorporates one more example as demonstrations.
We use OpenAI APIs to obtain responses. Due to space
constraints, we show the prompt in our repository [51].
3) Metrics: Log fault-indicating information extraction

aims to automatically identify the correct FID and FIP strings
in a format of word tokens from logs, which is a new task in
log analysis. To evaluate the task, we utilize the F1 score (F1),
which is widely used to measure the correctness of extracted
answer strings with the reference [45], [52]. F1 score measures
the average overlap between the predictions and ground truth
FID or FIP. As the F1 score is computed the same as the
Rouge-1 [53], a popular metric to evaluate textual summa-
rization, we simply use F1 here. We treat each prediction
and reference as bags of words and compute the Precision,
Recall, and F1-score of each example as follows: precision =

# shared tokens
# prediction tokens , recall = # shared tokens

# ground truth tokens , F1 =
2×precision×recall
precision + recall . Finally, the scores are averaged over all

examples for FID and FIP, respectively.
4) Implementation Details: We conduct our experiments

on a Linux GPU server with Intel Xeon 2.3GHz CPU and
NVIDIA Tesla V100 16G GPU. We implement LoFI with

Python 3.9, PyTorch 2.0 and transformers 4.26.1. For the log
selection module, we set 10 seconds as the default time to
collect a session of anomalous logs. When training the pre-
trained language models, we use AdamW [54] optimizer with
a learning rate of 5e-5 and linear scheduling with 5% warm-
up. The maximum input token length for UniXcoder is 512.
We set the training batch size as 8 and train the model for 100
epochs. We merge the top-3 scoring spans to get predictions.
In the online stage, we set the inference batch to 32. The time
period for online anomaly detection is 10 seconds.
B. RQ1: Effectiveness of LoFI
Setup. In this RQ, we evaluate the effectiveness of LoFI in
extracting fault-indicating information in an offline setting by
comparing it with a range of baseline models. To simulate the
process, we assume the anomalies are all correctly detected
and construct the log sessions with a time period of 10
seconds. We fine-tune the models on the training set with
randomly sampled 32 cases of FIBench and Industry and
evaluate on the remaining cases, respectively.
Results. The evaluation results in terms of precision, recall,
and F1 scores are shown in Table III. From the results, we
can find that: (1) LoFI achieves high accuracy in recognizing
fault-indicating information, with F1 scores of 87.4/80.6 for
FID/FIP on FIBench and 72.2/62.8 for FID/FIP on Industry,
which show the effectiveness of our method. LoFI’s superior
results stem from its design, which combines an efficient
log selection algorithm, a robust pretrained language model,
and a context-aware prompt-based tuning mechanism. Fur-
ther comparisons of the three components can be found in
§ V-C and § V-D. (2) LoFI significantly outperforms all
baseline methods in both FIBench and Industry for FID and
FIP, across all evaluation metrics. Specifically, in terms of
F1, LoFI surpasses the strongest baseline ChatGPT-ICL by
81% (an average of 75.8 over 41.9 across two datasets and
two fault-indicating information). This demonstrates LoFI’s
substantial superiority over existing baselines. Unsupervised
methods, such as TF-IDF, TextRank, and LogSummary, which
do not use pre-trained language models, struggle to understand
the log semantics, leading to low F1 scores in recogniz-
ing fault-indicating information across both datasets. Among
unsupervised methods, ChatGPT-Zeroshot stands out, which
is probably because ChatGPT is a powerful large language
models and can understand the log and question semantics.
Although incorporating the in-context learning mechanism
boosts ChatGPT-ICL’s performance, it still falls short of LoFI
by a large margin. The performance gap further emphasizes
LoFI’s superiority. (3) Comparing the results on FIBench and
Industry, we find the overall performance on FIBench is better
than that on Industry (84 versus 67.5 on average of F1 for
LoFI). This is probably because Industry is collected from
an industrial application which has a more diverse set of
faults and more complicated logs. (4) Comparing the results
of FID prediction and FIP prediction on both datasets, we
find that the overall accuracy of FID is higher than FIP (79.8
versus 71.7 on average of F1). This can be attributed to the
difference in word distribution between FID and FIP, where



TABLE III
EXPERIMENTAL RESULTS (%) OF LOG FAULT-INDICATING INFORMATION EXTRACTION

Method
FIBench-FID FIBench-FIP Industry-FID Industry-FIP

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

TF-IDF∗ 3.4 2.6 2.8 2.8 1.4 1.8 5.3 4.2 4.4 2.5 2.4 2.4
TextRank∗ 12.8 12.8 12.3 0.0 0.0 0.0 17.9 18.0 17.1 5.2 3.6 4.2
LogSummary∗ 4.5 5.4 4.5 3.6 1.1 1.7 16.2 13.5 14.2 6.9 4.9 5.5
ChatGPT-Zeroshot∗ 59.6 30.1 38.2 9.7 1.3 2.2 47.2 29.9 33.2 32.1 33.3 32.2
ChatGPT-ICL 53.3 51.6 49.6 46.5 44.4 44.9 45.1 33.3 35.9 41.3 38.3 37.0

LoFI (ours) 87.4 87.6 87.4 80.6 80.6 80.6 73.8 72.0 72.2 70.0 60.9 62.8
1 We use ∗ to denote unsupervised methods, others are supervised ones.

TABLE IV
RESULTS OF DIFFERENT LOG SELECTION (LS) METHODS (%)

FIBench Industry
CR Acc. F1-FID F1-FIP CR Acc. F1-FID F1-FIP

Full LoFI 39.9 100.0 87.4 80.6 62.7 98.2 72.2 62.8
- LS=HighestCtx 38.1 87.2 77.6 78.2 59.1 91.1 67.6 58.9
- LS=Highest 34.5 76.9 69.9 72.2 48.2 91.1 67.0 60.8
- LS=ErrorWarn 7.9 71.8 65.4 59.3 86.4 100.0 61.0 29.5
- LS=Error 4.0 23.1 16.7 13.9 44.6 85.7 64.0 56.5
- w/o LS - - 76.9 75.6 - - 50.2 43.7

the former are mainly written in natural language, and the
latter often contain parametric words like HTTP requests and
user IDs in hexadecimal format, which is more difficult to
recognize. Despite LoFI is based on UniXcoder, a language
model pretrained with mixture of natural language and code,
it still performs poorer on FIP than FID.

C. RQ2: Impacts of Log Selection

Setup. In this study, we examine the impacts of log selection
(LS) in LoFI on the performance of fault-indicating informa-
tion extraction. The LS module first selects severe logs based
on their logging levels and then collects related logs based on
embedding similarity. To this end, we completely remove LS
module and substitute it with four different LS methods. Next,
we fine-tune the PLMs using varied inputs on the same dataset
split as RQ1, and compare LoFI’s performance against these
LS variants. Besides F1 scores, we also report the selection
accuracy (Acc.), considering an example correct if the chosen
logs carry FID and FIP, and the compression ratio (CR), which
is the percentage of log lines remaining after LS.
• w/o LS: The log selection module is removed.
• LS=Error: Logs with the ERROR logging level are selected.
• LS=ErrorWarn: Logs with ERROR or WARN levels.
• LS=Highest: Logs with the highest logging level.
• LS=HighestCtx: Logs with the highest level are initially

selected. Contextual logs, which appear immediately before
and after these logs, are then merged with the first step.

Results. The results in Table IV shows that: (1) Our proposed
log selection method in the full LoFI model outperforms in
five out of six metrics, highlighting its superiority. Specially,
when comparing full LoFI to LoFI with LS=Highest and
LS=HighestCtx, we find that mining semantic-similar logs
can complement the hard level selection, allowing for more
accurate fault-indicating information extraction by finding
additional potential fault-related logs. (2) Despite using logs at
ERROR and WARN levels (LS=ErrorWarn) can cover 100%
FID and FIP in Industry, the performance still falls short as
it struggle to filter out irrelevant logs, resulting in a high
compression rate of 86.4%. As compression rates vary greatly

with logging level-based filtering due to varying software
logging styles, an adaptive LS strategy combining level and
semantic selection is a more effective solution.

D. RQ3: Impacts of Prompt-based Tuning

Setup. LoFI utilizes prompt-based tuning with PLMs to un-
derstand the semantic meaning of log contents and predict the
span of FID and FIP. In this RQ, we evaluate the effectiveness
of prompt-based tuning with different prompt designs and
tuning methods. We also investigate the influence of PLMs
by replacing UniXcoder to various PLMs.
• Prompt=LessInfo: A less informative hard prompt is

used [55], i.e., “Fault-indicating descriptions in the follow-
ing logs: ” for FID and “Fault-indicating parameters in the
following logs: ” for FIP.

• w/o Prompt: The prompt question are removed and only the
logs are used to fine-tune a UniXcoder model.

• w/o Tuning: Directly apply UniXcoder without finetuning
to predict the span of FID and FIP with the input of prompt
questions and logs.

• PLM=BERT: The PLM is replaced by BERT [46], the first
PLM for language understanding.

• PLM=RoBERTa: The PLM is replaced by RoBERTa [40],
an improved version of BERT with optimized hyperparam-
eters and a larger training corpus.

• PLM=CodeBERT: The PLM is replaced by CodeBERT [56],
the first PLM trained on a mix of natural language and code.

Results. The results shown in Table V reveal that: (1) Among
the prompt variants, prompt question performs the best, sug-
gesting that it provides important context for this task, thereby
enhancing PLMs’ ability to pinpoint relevant fault-indicating
information. Notably, the absence of prompts (w/o Prompt)
leads to a substantial performance drop, especially for FIP,
which sees a 51.6%/37.0% F1 drop on FIBench/Industry com-
pared to FID with only 28.8%/7.8% F1 drop. This difference
in decline ratio can be attributed to the variances in word
distribution between FID and FIP. Since FIP often contain
technical terms and domain-specific vocabulary that are less
common in the pre-training corpus, predicting them without
the context provided by the prompt is more challenging. (2)
LoFI shows poor performance without fine-tuning, especially
with FIP. This result shows the importance of fine-tuning,
which can significantly improve LoFI’s performance, even
when available training data is limited. (3) Among the PLMs,
UniXcoder achieves the best performance. Owing to its train-
ing on a hybrid corpus of code and natural language with



TABLE V
RESULTS OF PROMPT-BASED TUNING VARIANTS (%)

FIBench Industry
F1-FID F1-FIP F1-FID F1-FIP

Full LoFI 87.4 80.6 72.2 62.8
- Prompt=LessInfo 81.3 78.3 68.6 57.9
- w/o Prompt 58.6 29.0 64.4 25.8
- w/o Tuning 34.8 1.8 11.3 5.6

- PLM=CodeBERT 81.5 76.4 69.6 49.5
- PLM=RoBERTa 83.8 78.3 64.7 41.4
- PLM=BERT 77.5 78.7 65.4 14.6

improved training objectives, UniXcoder can better understand
the semantics of mixed text types. Consequently, it can more
effectively interpret logs, which comprise natural language and
code-like parameters, thus underscoring its superiority.

E. RQ4: How LoFI Assists in Online Diagnosis?

In this RQ, we conduct a user study to evaluate LoFI’s effec-
tiveness and usefulness in an online setting, where streaming
logs are continuously produced by the systems.
Setup. To simulate the diagnosis process in production envi-
ronments, we train LoFI on all 88 examples in Industry and
apply our online pipeline (§ IV-F) to new logs from 2023-
03-03 to 2023-04-02 to extract fault-indicating information.
The pipeline first identifies anomalous logs sessions using an
anomaly detection algorithm, then employs LoFI for extrac-
tion. Due to company policy, the total number of anomalies
is not disclosed. For the user study, 50 fault examples are
randomly sampled and evaluated by ten experienced engineers
from three different service teams within CloudA, averaging
3.6 years of experience.

We begin our study by showing participants with full raw
logs in the anomalous session, accompanied by extracted FID
and FIP. They are then asked to rate the accuracy of extracted
FID and FIP (Q1-Q2). After judging all examples, they
are asked if automatic fault-indicating information extraction
would help (Q3). Specially, Q1 and Q2 are rated on a 5-
point Likert scale [57], with participants encouraged to provide
explanations for their scores. We then summarize the results.
Q1. Do FIDs accurately represent anomalous events?
The average rating of the FID’s accuracy was 4.34, with a
majority of 30 examples scoring 5, 12 examples scoring 4,
4 scoring 3, 3 scoring 2, and 1 scoring 1. Overall, we find
that participants highly acknowledged the effectiveness of FID
in summarizing logs and aiding diagnosis. Apart from false
predictions, some examples with low scores were explained
by the participants, such as containing redundant information
and erroneous splitting.
Q2. Do FIP accurately identify anomalous components?
The average rating was 4.02, with a majority of 34 examples
scoring 5, 5 scoring 4, and 11 scoring 1. Overall, participants
were positive about FIP’s correctness, though one participant
noted a recurring issue with unnecessary predicted parameters:

“The description of ”sql cannot be full or empty” is correct.
But the example can have a void parameter since the root cause
is not system-related, but user-related.”
Q3. Would extracting fault-indicating information aid in
fault diagnosis? Notably, all participants agreed that auto-

mated extraction of fault-indicating information from logs
would help. In addition to reducing time and efforts for
diagnosis, some participants comment on other benefits, such
as implying root causes and following mitigation steps:

“The extracted fault-indicating descriptions can represent root
causes and are useful for troubleshooting.”
“The fault-indicating information can correlate to possible mit-
igation steps, e.g., when I see the description of ”service does
not exist” and the parameter of ”serviceId=...”, I realize I can
first try to restart the service to mitigate.”
“When is this tool scheduled to launch? I used to spend 3-4
hours mitigating a fault, but with this tool, I’ll be able to save
time on checking hundreds of logs to find run-time behaviour.”

Overall, engineers in CloudA acknowledge the value of
identified fault-indicating information in assisting with diagno-
sis, reducing time and human efforts. These findings highlight
the utility of automatic extraction of FID and FIP from logs,
shedding light on future research to improve log analysis and
fault diagnosis by mining more useful log information.

VI. INDUSTRIAL EXPERIENCE

In this section, we share our experience of applying LoFI to
real-world cloud service systems in CloudA, aiming to show
its usefulness. In CloudA, numerous services use logs to record
system runtime behaviors during runtime, which are retrieved
and analyzed when engineers diagnose a fault. However, when
analysing logs, engineers face two main challenges. Firstly,
due to the increasing scale and complexity of online service
systems, a single fault can cause cascading failures which
trigger sequential events in a short period of time, leading
to multiple log sessions from various services [36], [58].
Secondly, to support diagnosis, software systems may generate
extra log lines to record the specifics when problems arise [28],
e.g., software stack, resulting in tens to hundreds of logs per
session. Consequently, despite the use of log anomaly detec-
tion to reduce logs for investigation, engineers still struggle
with high log volumes. To address this, in CloudA, LoFI
has been integrated into the intelligent log analysis system
that serves hundreds of microservices to improve reliability.
LoFI processes anomalous log sessions and extracts fault-
indicating information to highlight symptoms and problematic
positions. This allows engineers to swiftly understand the fault
and grasp its essence, eliminating the need to read hundreds of
logs and allowing a greater focus on troubleshooting and root
cause analysis. In the following, we present two primary usage
scenarios of identified fault-indicating information in CloudA:
rapid diagnosis and alert configuration.
Rapid Diagnosis. Identifying fault-indicating information en-
ables online service providers to diagnose and recover from
incidents rapidly. Figure 1 shows the diagnosis workflow.
Upon realizing a failure, engineers first determine relevant
services and gather anomalous logs from these services. Then
they manually review these logs to pinpoint incident-related
information, e.g., failure events and faulty devices, determine
the root cause, and implement a mitigation plan. However,



this process can be time-consuming and potentially inaccu-
rate, especially in large-scale cloud systems with numerous
simultaneously events. LoFI automates this by extracting and
highlighting FID and FIP, providing an immediate snapshot of
anomalous actions and variables, thus significantly reducing
the time to identify the root cause.
Alert Configuration. Another use case of LoFI is configuring
alerts with summarized fault-indicating information from logs
during system monitoring. Alerting is commonly used in
software monitoring to indicate potential issues that need
attention. The current monitoring raise alerts based on prede-
fined conditions or thresholds, such as specific log occurrences
or detected anomalies [36], [59]–[61]. However, the alert
names are typically set by predefined templates, offering
limited actionable guidance to engineers. LoFI streamlines this
process by automatically creating alert contents with extracted
fault-indicating information, which can specify the events that
occurred, and the associated objects or variables. The summary
provides a clear overview of the anomaly and actionable alerts
to the SRE team, improving the overall efficiency of the entire
incident response process.

VII. THREATS TO VALIDITY

Internal Threats LoFI is designed to extract fault-indicating
information from logs when anomalies occur. Consequently,
it may struggle with normal log sessions due to different
data distributions and absence of fault-indicating information,
e.g., error status codes, error messages, faulty devices, etc.
Nevertheless, since normal logs are less critical and do not
require investigation unless anomalies are present, we consider
the model’s poor performance with normal logs acceptable.
External Threats In this paper, the task and method are
inspired by real-world fault mitigation practices with logs
in CloudA. One may concern LoFI’s applicability to other
systems from different companies. Since logs have long been
recognized as critical for software maintenance, and CloudA
is a large-scale cloud company providing hundreds of online
services for millions of users, we believe CloudA’s practices
are representative. Due to privacy and security concerns, we
cannot access data from other companies, so LoFI is only
evaluated on CloudA logs. However, the proposed approach
can be trained with a small number of labeled data, making it
feasible to apply LoFI to anomalous logs from other systems.

Another threat arises from the labeled data. LoFI relies
on a small set of labeled log fault-indicating information
for training and evaluation. The annotation requires engineers
to manually inspect the log sessions and history mitigation
records and mark the information span from the logs. Limited
by engineers’ varying experience, the label may not be entirely
accurate. However, the engineers involved are in charge of
cloud monitoring in CloudA and have rich experience in fault
localization and mitigation using logs. They can also search
online and discuss with colleagues to reach a consensus. Thus,
we believe the amount of inaccurate labels is small (if any).
By introducing extra annotated data to cover more anomalous
scenarios, our method is expected to predict fault-indicating
information more precisely.

VIII. RELATED WORKS

A. Logs Analysis for Failure Diagnosis

Logs are essential for diagnosing online service systems.
To reduce diagnosis efforts, various tools have been proposed
to mine informative content from large volumes of logs at
different granularities [12], [13].

One research direction focuses on mining a small set of
log messages for diagnosis. Anomaly detection [62] is a key
task that identifies a session of logs deviating from normal
behaviors. The sessions are usually split by a time period or
fixed length and then judged normal or not based on various
techniques, including traditional machine learning [9], [10],
[33], [63]–[65], deep learning [66]–[69], and language mod-
els [70], [71]. As a session can contain numerous continuous
logs and noise, some works propose to highlight lines that are
most likely to reveal problems by clustering logs. LogFault-
Flagger [72] flags problematic log lines for human inspection,
while LogSed [73] uses a time-weighted control flow graph
to identify problematic logs across multiple software threads.
Onion [8] identifies three aspects of incident-indicating logs
(i.e., consistency, impact, and bilateral difference) and locate
these logs with clustering. However, due to the complexity
and verbosity of log content, manually examining lines of logs
remains time-consuming for engineers to understand runtime
status and diagnose system problems [34], [74].

Another line of research focuses on extracting useful in-
formation from log messages at a finer granularity. Log
parsing [75], [76] identifies variables in logs by converting
logs into static templates and dynamic variables [20], [26],
[29], [77]–[81]. But these variables can not be directly used
for diagnosis as the corresponding categories and importance
levels are unaware [23]. To address this, SemParser [82] and
VALB [23] explicitly identify variables and corresponding
concept types (e.g., concepts like ”instance” and ”server”)
during parsing. However, these two works are used for log
parsing, and the identified variable and types may not relate
to failures. LogSummary [35] is a closely related work to
ours. They extract multiple triples from logs, i.e., (”entity”,
”event”, ”relation”), to represent a log sequence and improve
readability. However, these simple triples may not capture the
complex semantics of logs, and users are still unaware of
severe events and instances to help diagnosis.

B. Language Models for Log Analysis

Pre-trained language models (PLM) (e.g., BERT [46]) have
significantly advanced many software engineering tasks [83]
due to the strong ability to learn the semantic information of
the textual input. Based on the idea that logs are language
sequences [68], many studies applied PLMs to log analy-
sis. Swisslog [84] tunes BERT to encode log messages for
anomaly detection. Ott et al. [85] examine the effectiveness
of various PLMs for anomaly detection. NeuralLog [42]
directly feeds raw logs to PLMs to avoid the issues of out-
of-vocabulary words and semantic misunderstandings. Apart
from anomaly detection, PLMs are also used for log parsing.



LogStamp [80] treats log parsing as a sequence labeling prob-
lem, fine-tuning BERT to judge whether tokens are parameters.
LogPPT [29] explores prompt-based tuning on RoBERTa [40]
to identify templates and parameters.

However, these studies fail to provide actionable insights to
assist on-site engineers in diagnosing faults. Our work, LoFI
trains a PLM to learn semantics from a few labeled examples
with prompt-based tuning and can effectively identify fault-
indicating descriptions and parameters from logs for diagnosis.

IX. CONCLUSION

In conclusion, this paper has addressed the challenge of
extracting fault-indicating information from anomalous log
sessions to aid fault diagnosis and reduce mitigation efforts
in large-scale software systems. We conducted a prelimi-
nary study on log-based troubleshooting practices at CloudA,
and identified two types of information engineers typically
prioritize, i.e., fault-indicating descriptions (FID) and fault-
indicating parameters (FIP). Motivated by this finding, we
proposed a two-stage approach, LoFI, which performs coarse-
grained filtering in the first stage and leverages a pre-trained
language model with a novel prompt-based tuning method
in the second stage to extract fine-grained fault-indicating
information. Our evaluation of LoFI on FIBench and industrial
datasets demonstrated significant improvements over baseline
methods. Additionally, our user study and successful deploy-
ment to CloudA provided further evidence for the usefulness
of our proposed method.
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